• Title/Summary/Keyword: code equations

Search Result 651, Processing Time 0.026 seconds

A Study on the Vortex Generators of Plastic Plate Heat Exchangers (플라스틱 판형 열교환기의 와류발생기에 관한 연구)

  • Oh Yunyoung;Yoo Seongyeon;Ko Sungho
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.107-110
    • /
    • 2002
  • The present study deals with CFD analysis of 'The vortex generators on plastic plate heat exchanger'. When a vortex generator is placed on the heat transfer surface, the flow gets more complex because it entails complicated three-dimensional flows such as separation, reattachment, and recirculation. CFX-5.4, a commercial code utilizing unstructured mesh, has been used as a computational method for solving RANS(Reynolds-Averaged Wavier-Stokes) equations, and the applied turbulence model is $k-{\varepsilon}$ model. In addition, those computational analyses were implemented under various conditions , with or without the vortex generator between two plates, the number, form and the size of vortex generator, and different attack of angle. From the calculated temperature, velocity and pressure distribution, vorticity, wall heat flux and so on under those conditions, this study shows the effect of vortex on heat transfer.

  • PDF

Calculation of Fuel Spray Impingement and Fuel Film Formation in an HSDI Diesel Engine

  • Kyoungdoug Min;Kim, Manshik
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.376-385
    • /
    • 2002
  • Spray impingement and fuel film formation models with cavitation have been developed and incorporated into the computational fluid dynamics code, STAR-CD. The spray/wall interaction process was modeled by considering the effects of surface temperature conditions and fuel film formation. The behavior of fuel droplets after impingement was divided into rebound, spread and splash using the Weber number and parameter K(equation omitted). The spray impingement model accounts for mass conservation, energy conservation, and heat transfer to the impinging droplets. The fuel film formation model was developed by integrating the continuity, momentum, and energy equations along the direction of fuel film thickness. Zero dimensional cavitation model was adopted in order to consider the cavitation phenomena and to give reasonable initial conditions for spray injection. Numerical simulations of spray tip penetration, spray impingement patterns, and the mass of film-state fuel matched well with the experimental data. The spray impingement and fuel film formation models have been applied to study spray/wall impingement in high-speed direct injection diesel engines.

Nonlinear programming approach for a class of inverse problems in elastoplasticity

  • Ferris, M.C.;Tin-Loi, F.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.8
    • /
    • pp.857-870
    • /
    • 1998
  • This paper deals with a special class of inverse problems in discrete structural plasticity involving the identification of elastic limits and hardening moduli on the basis of information on displacements. The governing equations lead naturally to a special and challenging optimization problem known as a Mathematical Program with Equilibrium Constraints (MPEC), a key feature of which is the orthogonality of two sign-constrained vectors or so-called "complementarity" condition. We investigate numerically the application of two simple algorithms, both based on the use of the general purpose nonlinear programming code CONOPT accessed via the GAMS modeling language, for solving the suitably reformulated problem. Application is illustrated by means of two numerical examples.

Seismic analysis of transmission towers under various line configurations

  • Lei, Y.H.;Chien, Y.L.
    • Structural Engineering and Mechanics
    • /
    • v.31 no.3
    • /
    • pp.241-264
    • /
    • 2009
  • In this paper, the dynamic behavior for a group of transmission towers linked together through electrical wires and subjected to a strong ground motion will be investigated in detail. In performing the seismic analysis, the wires and the towers concerned are modeled, respectively, by using the efficient cable elements and the 3-D beam elements both considering geometric nonlinearities. In addition, to enhance the reliability and applicability of analytical outcome, a sophisticated soil-structure interaction model will be utilized in analyses. The strength capacities and the fracture occurrences for the main members of the tower are examined with the employment of the appropriate strength interaction equations. It is expected that by aid of this investigation, those who are engaged in code constitution or in practical designing of transmission towers may gain a better insight into the roles played by the interaction force between towers and wires and by the configurations of transmission lines under strong earthquake.

A Computational Study on Vortex Shedding around a Hydrofoil (날개 주위의 비정상 박리 현상에 관한 연구)

  • Wu-Joan Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.3
    • /
    • pp.51-61
    • /
    • 1995
  • A numerical method was developed to solve the Navies-Stokes equations for unsteady laminar flow around a hydrofoil. The present method used the finite-difference scheme in the collocated grid system and the pressure-Poisson method was employed to obtain divergence-free velocity field each time step. The numerical method was applied at first to laminar flow around a circular cylinder to confirm capability of the code. In the next, calculations were carried out for a hydrofoil in an unbounded fluid at the Reynolds number of $10^4$ in order to investigate unsteady phenomena with vortex shedding. The calculate results showed reasonable features about laminar vortex shedding around a streamlined body.

  • PDF

Development of Computer Program for Seismic Response Analysis of Base Isolated Structures (면진 구조물의 지진응답 해석 프로그램 개발)

  • 정정훈;허영철;김병현
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.348-355
    • /
    • 2001
  • A computer program named \"NLDA-BIS\", which runs under the MATLAB environment, is developed fur seismic response analysis of base isolated structures. This program can explicitly model the various nonlinear isolation elements such as elastomeric bearings, sliding bearings and general viscous dampers, and so on. Newmark'\`s constant average acceleration method fur calculating the responses in time domain and the iterative pseudo-force method for treating the nonlinear isolation forces are adopted. For capturing the hysteretic behavior of isolation elements, the modified Wen's equations are adopted and solved by the numerical differentiation formula method. To verify the validity of the developed program, the seismic responses of a six-story reinforced concrete base isolated structure are calculated and compared with results obtained by the program \"3D-BASIS\" developed at the State University of New York at Buffalo which is the most widely used code far analyzing isolated structures today.ed structures today.

  • PDF

Temperature Distribution of a Low Temperature Heat Pipe with Multiple Heaters for Electronic Cooling

  • Noh, Hong-Koo;Song, Kyu-Sub
    • ETRI Journal
    • /
    • v.20 no.4
    • /
    • pp.380-394
    • /
    • 1998
  • A numerical study has been performed to predict the characteristics on the transient operation of the heat pipe with multiple heaters for electronic cooling. The model of the heat pipe was composed of the evaporator section with four heaters, insulated transport section, and the condensor section with a conductor which is cooled with uniform heat flux condition to surrounding. The governing equations and the boundary conditions were solved by the generalized PHOENICS computational code employing the finite volume method. Two test cases are investigated in present study; Case 1 indicates that the 1st and 2nd heaters among four heating sources are heated off, while the 3rd and 4th heaters are heated on. Case 2 is the inverse situation switched from heating location of Case 1. The results show that the transient time to reach the steady state is shorter for Case 1 than for Case 2. Especially, the temperature difference of the heater during switching operation is relatively small compared to the maximum allowable operating temperature difference in electronic system. Hence, it is predicted that the heat pipe in present study operates with thermally good reliability even for switching the heaters.

  • PDF

Shear Strength of High Strength Concrete Beams with Steel Fibrous (강섬유를 혼입한 고강도 콘크리트 보의 전단강도)

  • 곽계환;박종건;정태영
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.4
    • /
    • pp.23-30
    • /
    • 2000
  • The purpose of this paper is to study on the shear strength of high strength concrete beams with steel fibrous. In general, the shear strength of reinforced concrete beams is affected by the compressive strengths of concrete( c), the shear span-depth ratio(a/d), the longitudinal steel ratio($\rho$ $\omega$), and shear reinforcement. An experimental investigation of the shear strength of high strength concrete beams with steel fibrous was conducted. In each series the shear span-depth ratio(a/d) was held constant at 1.5, 2.8, or 3.6, while concrete strengths were varied from 320 to 520, to 800kgf/$\textrm{cm}^2$. To verify the proposed equations the experimental results were compared with those from other researches such as equation of ACI code 318-95 or equation of Zsutty. To deduce equation for shear strength from experimental data carried out MINITAP program. According to the experimental results, the addition of steel fibrous has increased the deflection and strain at failure load, improving the brittleness of the high strength concrete.

Numerical Analysis of Cavity Characteristics and Thrust for Supercavitating Underwater Vehicle (초공동 수중운동체 주위 공동 특성과 추력 전산 해석)

  • Kim, Dong-Hyun;Park, Warn-Gyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.8-13
    • /
    • 2017
  • Cavitation is used in various fields. This study examined the drag reduction of an underwater vehicle using cavitation. In this study, the natural partial cavitation analysis results were verified using CFD code with the Navier-Stokes equation based on a mixture model. The momentum and continuity equations in the mixture phase were separately solved in the liquid and vapor phases. The solver employs an implicit preconditioning algorithm in curvilinear coordinates. The results of a computational analysis showed good agreement with the experiment. A computational analysis was also performed on the supercavity. The study investigated the cavity characteristics and drag of an underwater vehicle and studied the speed required to achieve a supercavity. Finally, a 1DOF analysis was carried out to investigate the thrust system for a supercavity. As a result, one of the methods for determining a suitable thrust system for a supercavitating underwater vehicle was presented.

A Numerical Study of Aerodynamic Characteristics for a Rotating Parachute in Steady Descending Motion (등속도로 하강중인 Rotating Parachute의 공력특성에 관한 수치 해법 연구)

  • Je S. E.;Jung S. G.;Kwag S. H.;Myong R. S.;Cho T. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.119-122
    • /
    • 2005
  • In this paper a method for analysing aerodynamic characteristics of a rotating parachute in steady descending motion is presented. Because of a complex geometric configuration of the parachute associated with side vents and discontinuous skirts, special procedure was adopted th handle the geometry in the analysis. A panel method was successfully applied to the present problem and yielded good results using above procedure. A CFD code using the full Navier-Stokes equations was also applied and provided good results. Parachute free drop and wind tunnel tests were performed to determine the fully developed canopy configuration and aerodynamic characteristics. The method can be used for optimizing the parachute size and side vent configurations in the design period.

  • PDF