• Title/Summary/Keyword: code equations

Search Result 651, Processing Time 0.026 seconds

The Variation of Flow Field and Hydrodynamic Coefficients of Submarine by Changes of Angle of Attack and Yaw Angle (유동 방향 변화에 따른 잠수함 주위의 유동 특성과 유체동역학적 계수의 변화)

  • Jang Jin-Ho;Park Warn-Gyu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.4 s.148
    • /
    • pp.460-466
    • /
    • 2006
  • The three-dimensional RANS equations were applied to analyze the flow field of a submarine. To validate the code, the DARPA SUBOFF bare hull and an eliipsoid at angles of attack of $10^{\circ}\;and\;30^{\circ}$ were simulated and good agreement with experiments was obtained. After the code validation, the flows over the full configuration of DARPA SUBOFF model having a fairwater and four stern appendages were simulated at four angles of attack $(0^{\circ},\;10^{\circ},\;20^{\circ},\;30^{\circ})$ and three yaw angles $(10^{\circ},\;20^{\circ},\;30^{\circ})$ Specifically, the pressure contours and streamlines of fairwater and stern appendage were compared as the angle of attack and yaw angle changed. The variations of hydrodynamic forces were also calculated.

A Study on the Effect of Turbine Nozzle with Fillet on Performance Characteristics of a Gas Turbine Engine (터빈 노즐의 Fillet 설치에 따른 가스터빈 엔진의 성능 특성에 관한 연구)

  • Kim, Jae-Min;Jin, Sang-Wook;Kim, Kui-Soon;Choi, Jeong-Yeol;Kim, Chun-Taek
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.542-545
    • /
    • 2009
  • In this study, the effect of turbine geometry on the overall performance of a gas turbine was investigated by computational fluid dynamics. Overall engine performance was predicted through a full engine simulation program which can predict the interactions of the compressor, the combustor and the turbine. The compressor and the turbine analysis code solves 2D and 3D Navier-Stokes equations respectively. The chemical equilibrium code was applied to simulate the combustor. The computations were performed for two different shapes of turbine nozzle. The nozzle shapes adopted a baseline blade and a blade with fillet.

  • PDF

Numerical computation of pulsed laser ablation phenomena by thermal mechanisms (열적 메커니즘에 의한 펄스레이저 어블레이션 현상의 수치계산)

  • Oh, Bu-Kuk;Kim, Dong-Sik
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1572-1577
    • /
    • 2003
  • High-power pulsed laser ablation under atmospheric pressure is studied utilizing numerical and experimental methods with emphasis on recondensation ratio, and the dynamics of the laser induced vapor flow. In the numerical calculation, the temperature pressure, density and vaporization flux on a solid substrate are first obtained by a heat-transfer computation code based on the enthalpy method, and then the plume dynamics is calculated by using a commercial CFD package. To confirm the computation results, the probe beam deflection technique was utilized for measuring the propagation of a laser induced shock wave. Discontinuities of properties and velocity over the Knudsen layer were investigated. Related with the analysis of the jump condition, the effect of the recondesation ratio on the plume dynamics was examined by comparing the pressure, density, and mass fraction of ablated aluminum vapor. To consider the effect of mass transfer between the ablation plume and air, unlike the most previous investigations, the equation of species conservation is simultaneously solved with the Euler equations. Therefore the numerical model computes not only the propagation of the shock front but also the distribution of the aluminum vapor. To our knowledge, this is the first work that employed a commercial CFD code in the calculation of pulsed ablation phenomena.

  • PDF

Effects of diaphragm flexibility on the seismic design acceleration of precast concrete diaphragms

  • Zhang, Dichuan;Fleischman, Robert B.;Lee, Deuckhang
    • Computers and Concrete
    • /
    • v.25 no.3
    • /
    • pp.273-282
    • /
    • 2020
  • A new seismic design methodology for precast concrete diaphragms has been developed and incorporated into the current American seismic design code. This design methodology recognizes that diaphragm inertial forces during earthquakes are highly influenced by higher dynamic vibration modes and incorporates the higher mode effect into the diaphragm seismic design acceleration determination using a first mode reduced method, which applies the response modification coefficient only to the first mode response but keeps the higher mode response unreduced. However the first mode reduced method does not consider effects of diaphragm flexibility, which plays an important role on the diaphragm seismic response especially for the precast concrete diaphragm. Therefore this paper investigated the effect of diaphragm flexibility on the diaphragm seismic design acceleration for precast concrete shear wall structures through parametric studies. Several design parameters were considered including number of stories, diaphragm geometries and stiffness. It was found that the diaphragm flexibility can change the structural dynamic properties and amplify the diaphragm acceleration during earthquakes. Design equations for mode contribution factors considering the diaphragm flexibility were first established through modal analyses to modify the first mode reduced method in the current code. The modified first mode reduced method has then been verified through nonlinear time history analyses.

Finite Element Analysis of the Neutron Transport Equation in Spherical Geometry (구형에서 중성자 수송방정식의 유한요소법에 의한 해석)

  • Kim, Yong-Ill;Kim, Jong-Kyung;Suk, Soo-Dong
    • Nuclear Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.319-328
    • /
    • 1992
  • The Galerkin formulation of the finite element method is applied to the integral law of the first-order form of the one-group neutron transport equation in one-dimensional spherical geometry. Piecewise linear or quadratic Lagrange polynomials are utilized in the integral law for the angular flux to establish a set of linear algebraic equations. Numerical analyses are performed for the scalar flux distribution in a heterogeneous sphere as well as for the criticality problem in a uniform sphere. For the criticality problems in the uniform sphere, the results of the finite element method, with the use of continuous finite elements in space and angle, are compared with the exact solutions. In the heterogeneous problem, the scalar flux distribution obtained by using discontinuous angular and spatical finite elements is in good agreement with that from the ANISN code calculation.

  • PDF

A Study on Shear Strength Prediction for High-Strength Reinforced Concrete Deep Beams Using Strut-and-Tie Model (스트럿-타이 모델에 의한 고강도 철근콘크리트 깊은 보의 전단강도 예측에 관한 연구)

  • 이우진;서수연;윤승조;김성수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.918-923
    • /
    • 2003
  • Reinforced concrete deep beams are commonly used in many structural applications, including transfer girders, pile caps, foundation walls, and offshore structures. The existing design methods were developed and calibrated using normal strength concrete test results, and their applicability th HSC deep beams must be assessed. For the shear strength prediction of high-strength concrete(HSC) deep beams, this paper proposed Softened Strut-and-Tie Model(SSTM) considered HSC and bending moment effect. The shear strength predictions of the refined model, the formulas the ACI 318-02 Appendix A STM, and Eq. of ACI 318-99 11.8 are compared with the collected experimental data of 74 HSC deep beams with compressive strength in the range of 49-78MPa . It is shown the shear strength of deep beam calculated by those equations are conservative on comparing test results. The comparison shows that the performance of the proposed SSTM is better than the ACI Code approach for all the parameters under comparison. The parameters reviewed include concrete strength, the shear span-depth ratio, and the ratio of horizontal and vertical reinforcement. The proposed SSTM gave a mean predicted to experimental ratio of 0.99, 32 percent higher than ACI 318-02 Code, however with the low coefficient variation.

  • PDF

Bond mechanism of 18-mm prestressing strands: New insights and design applications

  • Dang, Canh N.;Marti-Vargas, Jose R.;Hale, W. Micah
    • Structural Engineering and Mechanics
    • /
    • v.76 no.1
    • /
    • pp.67-81
    • /
    • 2020
  • Pretensioned concrete (PC) is widely used in contemporary construction. Bond of prestressing strand is significant for composite-action between the strand and concrete in the transfer and flexural-bond zones of PC members. This study develops a new methodology for quantifying the bond of 18-mm prestressing strand in PC members based on results of a pullout test, the Standard Test for Strand Bond (STSB). The experimental program includes: (a) twenty-four pretensioned concrete beams, using a wide range of concrete compressive strength; and (b) twelve untensioned pullout specimens. By testing beams, the transfer length, flexural-bond length, and development length were all measured. In the STSB, the pullout forces for the strands were measured. Experimental results indicate a significant relationship between the bond of prestressing strand to the code-established design parameters, such as transfer length and development length. However, the code-predictions can be unconservative for the prestressing strands having a low STSB pullout force. Three simplified bond equations are proposed for the design applications of PC members.

Effects of Upstream Wake Frequency on the Unsteady Boundary Layer Characteristics On a Downstream Blade (상류 후류의 발달 주파수가 하류 익형의 비정상 경계층 거동에 미치는 영향)

  • Bae Sang Su;Kang Dong Jin
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.11a
    • /
    • pp.181-186
    • /
    • 1999
  • The effects of the frequency of upstream gust on the unsteady boundary characteristics on a downstream blade was simulated by using a Navier-Stokes code. The Navier-Stokes code is based on an unstructured finite volume method and uses a low Reynolds k-e turbulence model to close the momentum equations. The MIT flapping foil experiment set-up is used to simulate the interaction between the upstream wake and a blade. The frequency of the upstream wake is simulated by varying rate of pitching motion of the flapping airfoils. Three reduced frequencies. 3.62. 7.24. and 10.86. are simulated. As the frequency increases, the unsteady fluctuation on the surfaces of the downstream hydrofoil is shown to decrease while the upstream flapper wake has larger first harmonics of y-velocity component. The unsteady vortices are shown to interact with each other and. as a result. the upstream wake becomes undiscernible inside the inner layer. The turbulence kinetic energy shows a similar behavior. Limiting streamlines around the trailing edge of the flapper are shown to conform with the unsteady Kutta condition for a round trailing edge. while limiting streamlines around the trailing edge of the hydrofoil conforms with the unsteady Kutta condition for a sharp edge.

  • PDF

NUMERICAL ANALYSIS OF CAVITATION WITH COMPRESSIBILITY EFFECTS AROUND HEMISPHERICAL HEAD-FORM BODY (반구형 전두부 실린더에서 발생하는 캐비테이션 유동의 압축성 효과에 대한 수치해석 연구)

  • Park, S.;Rhee, S.H.;Shin, B.R.
    • Journal of computational fluids engineering
    • /
    • v.18 no.4
    • /
    • pp.9-16
    • /
    • 2013
  • Cavitation on an axi-symmetric hemispherical head-form body was studied using an Reynolds-averaged Navier-Stokes equations solver based on a cell-centered finite volume method. To consider compressibility effects on the vapor phase and cavity interface, a pressure-based compressible flow CFD code was developed. To validate the developed CFD code, cavitating flow around the hemispherical head-form body was simulated using pressure-based incompressible and compressible CFD codes and validated against existing experimental data in the three-way comparison. The cavity shedding behavior, length of re-entrant jet, drag history, and Strouhal number of the hemispherical head-form body were compared between two CFD codes. The results, in this paper, suggested that the computations of cavitating flow with compressibility effects improve the description of cavity dynamics.

Redistribution of moments in reinforced high-strength concrete beams with and without confinement

  • Lou, Tiejiong;Lopes, Sergio M.R.;Lopes, Adelino V.
    • Structural Engineering and Mechanics
    • /
    • v.55 no.2
    • /
    • pp.379-398
    • /
    • 2015
  • Confinement is known to have important influence on ductility of high-strength concrete (HSC) members and it may therefore be anticipated that this parameter would also affect notably the moment redistribution in these members. The correctness of this "common-sense knowledge" is examined in the present study. A numerical test is performed on two-span continuous reinforced HSC beams with and without confinement using an experimentally validated nonlinear model. The results show that the effect of confinement on moment redistribution is totally different from that on flexural ductility. The moment redistribution at ultimate limit state is found to be almost independent of the confinement, provided that both the negative and positive plastic hinges have formed at failure. The numerical findings are consistent with tests performed on prototype HSC beams. Several design codes are evaluated. It is demonstrated that the code equations by Eurocode 2 (EC2), British Standards Institution (BSI) and Canadian Standards Association (CSA) can well reflect the effect of confinement on moment redistribution in reinforced HSC beams but the American Concrete Institute (ACI) code cannot.