• Title/Summary/Keyword: code complexity

Search Result 594, Processing Time 0.022 seconds

Introduction to Tasks in the International Cooperation Project, DECOVALEX-2023 for the Simulation of Coupled Thermohydro-mechanical-chemical Behavior in a Deep Geological Disposal of High-level Radioactive Waste (고준위방사성폐기물 처분장 내 열-수리-역학-화학적 복합거동 해석을 위한 국제공동연구 DECOVALEX-2023에서 수행 중인 연구 과제 소개)

  • Kim, Taehyun;Lee, Changsoo;Kim, Jung-Woo;Kang, Sinhang;Kwon, Saeha;Kim, Kwang-Il;Park, Jung-Wook;Park, Chan-Hee;Kim, Jin-Seop
    • Tunnel and Underground Space
    • /
    • v.31 no.3
    • /
    • pp.167-183
    • /
    • 2021
  • It is essential to understand the complex thermo-hydro-mechanical-chemical (THMC) coupled behavior in the engineered barrier system and natural barrier system to secure the high-level radioactive waste repository's long-term safety. The heat from the high-level radioactive waste induces thermal pressurization and vaporization of groundwater in the repository system. Groundwater inflow affects the saturation variation in the engineered barrier system, and the saturation change influences the heat transfer and multi-phase flow characteristics in the buffer. Due to the complexity of the coupled behavior, a numerical simulation is a valuable tool to predict and evaluate the THMC interaction effect on the disposal system and safety assessment. To enhance the knowledge of THMC coupled interaction and validate modeling techniques in geological systems. DECOVALEX, an international cooperation project, was initiated in 1992, and KAERI has participated in the projects since 2008 in Korea. In this study, we introduced the main contents of all tasks in the DECOVALEX-2023, the current DECOVALEX phase, to the rock mechanics and geotechnical researchers in Korea.

International Study and Transformational Learning: What Covid-19 Has Taught Us

  • Rodgers, Steve
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1221-1221
    • /
    • 2022
  • Studying abroad in and of itself should be a unique and transformational learning experience for university students. Too often, "study abroad" is a code word for "faculty vacation" or "easy credit hours". For an international learning experience to be truly transformational it must offer an intense and directed program that maximizes the time the student spends in the accumulation of information that is new or different from what the student has "learned" previously. "Study abroad" may be a misnomer because it is not only about studying in another country or culture, that is, taking courses that usually have an attendance time of a few hours a week, but it is also about living in another country which becomes a 24/7 learning experience. Providing these programs during the Covid-19 pandemic has been a keen opportunity for institutional learning. When this immersion in foreign culture is combined with academic rigor applied to a student's chosen field of study the growth can be exponential. So, what is the relationship between academic and personal growth? The National Association for Study Abroad has found that "students who have studied abroad are better able to work with people from other countries, understand the complexity of global issues, and have greater intercultural learning. One study found that students returned from their study abroad experiences more tolerant and less fearful of other countries, but with a greater sense of nationalism-a phenomenon they called 'enlightened nationalism'." It is often said that "you only really learn to appreciate things that are important to you when they are gone, when you miss them." The international learning environment can provide this opportunity. The restrictions on various societies in the past two years due to the international Covid pandemic have provided existing study abroad programs with a true testing ground for the validity of their programs. At the end of the day, American colleges and universities are not helpless in the face of these developments. A lot depends on how a university positions itself for a future based on the uncertainties of the past. As Winston Churchill was working to form the United Nations after WWII, he famously said, "Never let a good crisis go to waste". In another context, Churchill's insight on human nature can also be applied to the coming semesters and years as studying abroad rebounds. What new strategies will be developed and maintained? Institutional commitment without fear will be necessary to assure that "studying abroad" will continue to develop as a truly unique and transformational learning experience.

  • PDF

The Optimal Turbo Coded V-BLAST Technique in the Adaptive Modulation System corresponding to each MIMO Scheme (적응 변조 시스템에서 각 MIMO 기법에 따른 최적의 터보 부호화된 V-BLAST 기법)

  • Lee, Kyung-Hwan;Ryoo, Sang-Jin;Choi, Kwang-Wook;You, Cheol-Woo;Hong, Dae-Ki;Kim, Dae-Jin;Hwang, In-Tae;Kim, Cheol-Sung
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.6 s.360
    • /
    • pp.40-47
    • /
    • 2007
  • In this paper, we propose and analyze the Adaptive Modulation System with optimal Turbo Coded V-BLAST(Vertical-Bell-lab Layered Space-Time) technique that adopts the extrinsic information from MAP (Maximum A Posteriori) Decoder with Iterative Decoding as a priori probability in two decoding procedures of V-BLAST; the ordering and the slicing. Also, we consider and compare the Adaptive Modulation System using conventional Turbo Coded V-BLAST technique that is simply combined V-BLAST with Turbo Coding scheme and the Adaptive Modulation System using conventional Turbo Coded V-BLAST technique that is decoded by the ML (Maximum Likelihood) decoding algorithm. We observe a throughput performance and a complexity. As a result of a performance comparison of each system, it has been proved that the complexity of the proposed decoding algorithm is lower than that of the ML decoding algorithm but is higher than that of the conventional V-BLAST decoding algorithm. however, we can see that the proposed system achieves a better throughput performance than the conventional system in the whole SNR (Signal to Noise Ratio) range. And the result shows that the proposed system achieves a throughput performance close to the ML decoded system. Specifically, a simulation shows that the maximum throughput improvement in each MIMO scheme is respectively about 350 kbps, 460 kbps, and 740 kbps compared to the conventional system. It is suggested that the effect of the proposed decoding algorithm accordingly gets higher as the number of system antenna increases.

A Scalable and Modular Approach to Understanding of Real-time Software: An Architecture-based Software Understanding(ARSU) and the Software Re/reverse-engineering Environment(SRE) (실시간 소프트웨어의 조절적${\cdot}$단위적 이해 방법 : ARSU(Architecture-based Software Understanding)와 SRE(Software Re/reverse-engineering Environment))

  • Lee, Moon-Kun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.12
    • /
    • pp.3159-3174
    • /
    • 1997
  • This paper reports a research to develop a methodology and a tool for understanding of very large and complex real-time software. The methodology and the tool mostly developed by the author are called the Architecture-based Real-time Software Understanding (ARSU) and the Software Re/reverse-engineering Environment (SRE) respectively. Due to size and complexity, it is commonly very hard to understand the software during reengineering process. However the research facilitates scalable re/reverse-engineering of such real-time software based on the architecture of the software in three-dimensional perspectives: structural, functional, and behavioral views. Firstly, the structural view reveals the overall architecture, specification (outline), and the algorithm (detail) views of the software, based on hierarchically organized parent-chi1d relationship. The basic building block of the architecture is a software Unit (SWU), generated by user-defined criteria. The architecture facilitates navigation of the software in top-down or bottom-up way. It captures the specification and algorithm views at different levels of abstraction. It also shows the functional and the behavioral information at these levels. Secondly, the functional view includes graphs of data/control flow, input/output, definition/use, variable/reference, etc. Each feature of the view contains different kind of functionality of the software. Thirdly, the behavioral view includes state diagrams, interleaved event lists, etc. This view shows the dynamic properties or the software at runtime. Beside these views, there are a number of other documents: capabilities, interfaces, comments, code, etc. One of the most powerful characteristics of this approach is the capability of abstracting and exploding these dimensional information in the architecture through navigation. These capabilities establish the foundation for scalable and modular understanding of the software. This approach allows engineers to extract reusable components from the software during reengineering process.

  • PDF