• Title/Summary/Keyword: cobalt thin film

Search Result 43, Processing Time 0.028 seconds

Synthesis of Cobalt Oxide Film by Thermal Decomposition for Potential Various Applications

  • Han, Seong Ho;Park, Bo Keun;Son, Seong Uk;Kim, Chang Gyoun;Chung, Taek-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.365.1-365.1
    • /
    • 2014
  • Cobalt oxide has excellent various properties such as high catalytic activity, antiferromagnetism, and electrochromism. So cobalt oxides offer a great potential for their applications in the various areas such as optical gas sensor, catalysts for oxidation reaction, electrochromic devices, high temperature solar selective absorbers, magnetic materials, pigment for glasses and ceramics, and negative electrodes for lithium-ion batteries. We have synthesized novel cobalt complexes by simple reaction of cobalt bistrimethylsilylamide as a starting material with a lot of conventional ligands as potential cobalt oxide precursors. The studies include the facile preparation, structural characterization, and spectroscopic analysis of the new precursors. We are making efforts to grow cobalt oxide thin films using cobalt complexes newly synthesized in this study using deposition techniques.

  • PDF

Nanoparticulate Co-Ferrite Thin Films on Glass Substrate Prepared by Sol-Gel Method (유리기판에 sol-gel법으로 제조된 나노입자 Co-ferrite 박막의 특성)

  • 오영제;최현석;최세영
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.5
    • /
    • pp.425-431
    • /
    • 2000
  • Cobalt ferrite thin films on Corming glass substrate were fabricated by a sol-gel method. Cobalt ferrite thin films with the grain size of 20-35 nm and thickness of 50nm were obtained. Rapid thermal annealing (RTA) and Annealing processes were adopted for comparison of characteristics of the films. Coercivity values were changed with thermal condition and magnetization values were increased as a function of soaking time. With prolonged soaking time, however, it was decreased because of the diffusion of cations from the glass substrate. The RTA process in preparation of cobalt ferrite thin film was the effective way to prevent and to form a single spinel phase in reduced soaking time. The film heated at 600$^{\circ}C$ for 30 minutes by RTA had coercivity of 2,600 Oe, saturation magnetization 460 emu/㎤, and Mr$.$$\delta$ of 1.43 memu/$\textrm{cm}^2$.

  • PDF

Construction of a PEALD System and Fabrication of Cobalt Thin Films (PEALD 장치 제작 및 Co박막 증착)

  • Lee, D.H.;Noh, S.J.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.2
    • /
    • pp.110-115
    • /
    • 2007
  • A plasma enhanced atomic layer deposition(PEALD) system has been constructed adopting an inductively coupled plasma(ICP) source with an ALD system, and its plasma generation was carried out. Cobalt thin films were deposited on a p-type Si(100) wafer at $230^{\circ}C$. $Co_{2}(CO)_{6}$ was used as a cobalt precursor, $NH_{3}$ as a reactant, and Ar as a carrier and purge gas. The properties of the thin films were investigated using field emission scanning electron microscopy(FESEM) and auger electron spectroscopy(AES). Large amounts of impurities were found in both the ALD film and the PEALD film, however, the amount of impurities in the PEALD film was reduced to about 50 % compared to that in the ALD film. It was found that $NH_{3}$ plasma, very effectively, induces the reaction with carbon in a cobalt precursor.

Magnetic Properties and Microstructure of Co Thin Films by RF-diode Sputtering Method (RF-diode Sputtering법으로 제작한 Co박막의 자기특성과 미세구조)

  • Han, Chang-Suk;Kim, Sang-Wook
    • Korean Journal of Materials Research
    • /
    • v.28 no.3
    • /
    • pp.159-165
    • /
    • 2018
  • In order to increase the efficiency of the sputtering method widely used in thin film fabrication, a dc sputtering apparatus which supplies both high frequency and magnetic field from the outside was fabricated, and cobalt thin film was fabricated using this apparatus. The apparatus can independently control the applied voltage, the target-substrate distance, and the target current, which are important parameters in the sputtering method, so that a stable glow discharge is obtained even at a low gas pressure of $10^{-3}$ Torr. The fabrication conditions using the sputtering method were mainly performed in $Ar+O_2$ mixed gas containing about 0.6 % oxygen gas under various Ar gas pressures of 1 to 30 mTorr. The microstructure of Co thin films deposited using this apparatus was examined by electron diffraction pattern and X-ray techniques. The magnetic properties were investigated by measuring the magnetization curves. The microstructure and magnetic properties of Co thin films depend on the discharge gas pressure. The thin film fabricated at high gas pressure showed a columnar structure containing a large amount of the third phase in the boundary region and the thin film formed at low gas pressure showed little or no columnar structure. The coercivity in the plane was slightly larger than that in the latter case.

Charge/discharge characteristics of $LiCoO_2$ thin film prepared by electron-beam evaporation with deposition rate and annealing temperatures (Electron-beam 증발법으로부터 증착속도 및 열처리 온도에 따른 $LiCoO_2$ 박막의 충방전 특성)

  • Nam S. C.;Cho W. I.;Cho B. W.;Yun K. S.;Chun H. S.
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.1
    • /
    • pp.46-49
    • /
    • 1999
  • Lithium cobalt oxide cathode for thin-film rechargeable lithium batteries were fablicated by electron-beam evaporation. Annealed lithium cobalt oxide, which was deposited on to stainless steel substrate, showed well-developed (003) planes of the hexagonal structure and potential plateau at $\~3.9 V$. Lithium cobalt oxide thin films had the stoichiometric Li/co ratio at high deposition rates and exhibited high discharge capacity at $15{\AA}/s$. As the annealing temperature increased, discharge capacity increased with maximum value at $700^{\circ}C$, but showed low capacity as a result of reaction with substrate above $700^{\circ}C$. Unuiformity of the lithium and cobalt in the depth profile gave initial capacity loss with charge/discharge performance.

Generation of 1/f Noise in Interfacial Structures between Silicon Substrate and Cobalt Thin Film (실리콘과 코발트 박막의 계면구조에서 발생하는 1/f 잡음현상 연구)

  • 조남인;남형진;박종윤
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.1
    • /
    • pp.48-53
    • /
    • 1996
  • We present a microscopic description for generation of 1/f noise in interfaces between cobalt thin film and silicon substrate. Along with surface resistance measurements and transmission electron diffraction observations. 1/f noise power spectral density has been measured for the interfacial structures at the liquid nitrogen temperature . The cobalt films have been deposited by the electron-beam evaporation technique onto p-type (100) silicon in the high vacuum condition. The measured noise power spectral density shows highest magnitude near the structural transition and metallization transition region. The noise magnitude rapidly decreased after the cobalt silicide nucleation. The noise parameter is concluded to be originated form the structural fluctuations.

  • PDF

Nickel Doping on Cobalt Oxide Thin Film Using by Sputtering Process-a Route for Surface Modification for p-type Metal Oxide Gas Sensors

  • Kang, Jun-gu;Park, Joon-Shik;An, Byeong-Seon;Yang, Cheol-Woong;Lee, Hoo-Jeong
    • Journal of the Korean Physical Society
    • /
    • v.73 no.12
    • /
    • pp.1867-1872
    • /
    • 2018
  • This study proposes a route for surface modification for p-type cobalt oxide-based gas sensors. We deposit a thin layer of Ni on the Co oxide film by sputtering process and annealed at $350^{\circ}C$ for 15 min in air, which changes a typical sputtered film surface into one interlaced with a high density of hemispherical nanoparticles. Our in-depth materials characterization using transmission electron microscopy discloses that the microstructure evolution is the result of an extensive inter-diffusion of Co and Ni, and that the nanoparticles are nickel oxide dissolving some Co. Sensor performance measurement unfolds that the surface modification results in a significant sensitivity enhancement, nearly 200% increase for toluene (at $250^{\circ}C$) and CO (at $200^{\circ}C$) gases in comparison with the undoped samples.

Passive Film on Cobalt: A Three-Parameter Ellipsometry Study During the Film Formation

  • Woon-Kie Paik;Seunghyun Koh
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.5
    • /
    • pp.540-544
    • /
    • 1991
  • Thin film being formed on the surface of cobalt in the early stage of electrochemically induced passivation was studied by the three-parameter ellipsometry. The growth of the passive film was complete in a few seconds from the onset of the passivating potential, and was followed by a slight decrease in the thickness in 4-40 seconds. The optical constants of the passive film changed gradually during the changes in the thickness. The thickness and the optical properties at the steady state of passivation depended on the potential of the electrode. From the coulometric data and the optical properties, the composition of the passive films was deduced to be close to those of CoO, ${Co_3}{O_4}$ and ${Co_2}{O_3}$ depending on the potential. Cathodic reduction in the presence of EDTA was found to be an efficient way to obtain film-free reference surface of cobalt.

Preparation of Porous Cobalt Thin Films by Using an Electrochemical Method (전기화학적 방법을 통한 다공성 코발트 박막 합성)

  • Ha, Seong-Hyeok;Shin, Heon-Cheol
    • Journal of Surface Science and Engineering
    • /
    • v.53 no.6
    • /
    • pp.312-321
    • /
    • 2020
  • Morphology of porous cobalt electro-deposits was systematically investigated as functions of cobalt precursors in the plating bath and applied cathodic current density with a special focus on cobalt nano-rod formation. It was proved that the concentration of cobalt precursor plays little effect on the morphology of cobalt electro-deposits at relatively low plating current density while it significantly affects the morphology with increasing plating current density. Such a dependence was discussed in terms of the kinetics of two competitive reactions of cobalt reduction and hydrogen evolution. Cobalt nano-rod structure was created at specific ranges of cobalt precursor content and applied cathodic current density, and its diameter and length varied with plating time without notable formation of side branches which is usually found during dendrite formation. Specifically, the nano-rod length was preferentially increased in relative short plating time (<15 s), resulting in higher aspect ratio of nano-rod with plating time. Whereas, both the nano-rod length and diameter were increased nearly at the same level in a prolonged plating time, making the aspect ratio unchanged. From the analysis of crystal structure, it was confirmed that the cobalt nano-rod preferentially grew in the form of single crystal on a dense poly-crystalline cobalt thin film initially formed on the substrate.