• Title/Summary/Keyword: coating properties

Search Result 2,855, Processing Time 0.036 seconds

Microstructure and Electrical Properties of $(Bi,La)_4Ti_3O_{12}$ Thin Film Fabricated by Pulsed Laser Deposition Method (펄스 레이저 증착법으로 제작한 $(Bi,La)_4Ti_3O_{12}$ 박막의 미세구조 및 전기적 특성)

  • Kim, Young-Min;Yoo, Hyo-Sun;Kang, Il;Kim, Nam-Je;Jang, Gun-Eik;Kweon, Soon-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.277-277
    • /
    • 2007
  • $(Bi,La)_4Ti_3O_{12}$ (BLT) 물질은 결정 방향에 따른 강한 이방성의 강유전 특성을 나타낸다. 따라서 BLT 박막을 이용하여 FeRAM 소자 등을 제작하기 위해서는 결정의 방향성을 세심하게 제어하는 것이 매우 중요하다. 현재까지 연구된 BLT 박막의 방향성 조절 결과를 보면, BLT 박막을 스핀 코팅 법 (spin coating method)으로 중착하고, 핵생성 열처리 단계를 조절하여 무작위 방향성 (random orientation)을 갖는 박막을 제조하는 방법이 일반적이었다. 그런데 이러한 스핀 코팅법에서의 핵생성 단계의 제어는 공정 조건 확보가 너무 어려운 단점이 있다. 이러한 어려움을 극복할 수 있는 대안은 스퍼터링 증착법 (sputtering deposition method), PLD법 (pulsed laser deposition method) 등과 같은 PVD (physical vapor deposition) 법의 증착방법을 적용하는 것이다. PVD 법으로 증착하는 경우에는 이미 박막 내에 무수한 결정핵이 존재하기 때문에 핵생성 단계가 필요 없게 된다. PVD 증착법의 적용을 위해서는 타겟 (target)의 제조 및 평가 실험이 선행되어야 한다. 그런데 벌크 BLT 재료의 소결공정 조건과 전기적 특성에 관한 연구 결과는 거의 발표 되지 않고 있다. 본 실험에서는 $Bi_2O_3$, $TiO_2$ and $La_2O_3$ 분말을 이용하여 최적의 조성을 구하기 위하여 Bi양을 변화시키며 타겟을 제조 하였다. 혼합된 분말을 하소 후 pallet 형태로 성형하여 소결을 실시하였다. 시편을 1mm 두께로 연마하고, 표면에 silver 전극을 인쇄하여 전기적 특성을 측정하였다. Bi양이 3.28몰 첨가된 조성에서 최대의 잔류분극 (2Pr) 값을 얻었고, 이때의 값은 약 $18{\mu}C/cm^2$ 정도였다. 최적화된 조성 ($Bi_{3.28}La_{0.75}Ti_3O_{12}$)으로 BLT 타겟을 제조하여 PLD법으로 박막을 제조하였다. 박막 제조 시 압력은 $1{\times}10^{-1}\;{\sim}\;1{\times}10^{-4}\;Torr$ 범위에서 변화시켰다. $1{\times}10^{-1}\;Torr$ 압력을 제외하고는 모든 압력에서 BLT 박막이 증착되었다. 중착된 박막을 $650\;{\sim}\;800^{\circ}C$에서 30분간 열처리를 실시하고 전기적 특성을 평가한 결과, $1{\times}10^{-2}\;Torr$에서 증착한 박막에서 양호한 P-V (polarization-voltage) 이력곡선을 얻을 수 있었고, 이때의 잔류분극 (2Pr) 값은 약 $6\;{\mu}C/cm^2$ 이었다. 주사전자현미경 (SEM)을 이용하여 BLT 박막 표면의 미세구조도 관찰하였는데, 스핀코팅 법으로 증착한 경우에 관찰되었던 조대화된 입자들은 관찰되지 않았고, 상당히 양호한 입자 크기 균일도를 나타내었다.

  • PDF

$TiO_2$ Thin Film Patterning on Modified Silicon Surfaces by MOCVD and Microcontact Printing Method

  • 강병창;이종현;정덕영;이순보;부진효
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.77-77
    • /
    • 2000
  • Titanium oxide (TiO2) thin films have valuable properties such as a high refractive index, excellent transmittance in the visible and near-IR frequency, and high chemical stability. Therefore it is extensively used in anti-reflection coating, sensor, and photocatalysis as electrical and optical applications. Specially, TiO2 have a high dielectric constant of 180 along the c axis and 90 along the a axis, so it is highlighted in fabricating dielectric capacitors in micro electronic devices. A variety of methods have been used to produce patterned self-assembled monolayers (SAMs), including microcontact printing ($\mu$CP), UV-photolithotgraphy, e-beam lithography, scanned-probe based micro-machining, and atom-lithography. Above all, thin film fabrication on $\mu$CP modified surface is a potentially low-cost, high-throughput method, because it does not require expensive photolithographic equipment, and it produce micrometer scale patterns in thin film materials. The patterned SAMs were used as thin resists, to transfer patterns onto thin films either by chemical etching or by selective deposition. In this study, we deposited TiO2 thin films on Si (1000 substrateds using titanium (IV) isopropoxide ([Ti(O(C3H7)4)] ; TIP as a single molecular precursor at deposition temperature in the range of 300-$700^{\circ}C$ without any carrier and bubbler gas. Crack-free, highly oriented TiO2 polycrystalline thin films with anatase phase and stoichimetric ratio of Ti and O were successfully deposited on Si(100) at temperature as low as 50$0^{\circ}C$. XRD and TED data showed that below 50$0^{\circ}C$, the TiO2 thin films were dominantly grown on Si(100) surfaces in the [211] direction, whereas with increasing the deposition temperature to $700^{\circ}C$, the main films growth direction was changed to be [200]. Two distinct growth behaviors were observed from the Arhenius plots. In addition to deposition of THe TiO2 thin films on Si(100) substrates, patterning of TiO2 thin films was also performed at grown temperature in the range of 300-50$0^{\circ}C$ by MOCVD onto the Si(100) substrates of which surface was modified by organic thin film template. The organic thin film of SAm is obtained by the $\mu$CP method. Alpha-step profile and optical microscope images showed that the boundaries between SAMs areas and selectively deposited TiO2 thin film areas are very definite and sharp. Capacitance - Voltage measurements made on TiO2 films gave a dielectric constant of 29, suggesting a possibility of electronic material applications.

  • PDF

Modification of Water-borne Polyurethane Using Benzophenone Crosslinker (Benzophenone 가교제를 이용한 수분산 폴리우레탄 개질)

  • Kim, HyeokJin;Kim, Jin Chul;Chang, SangMok;Seo, BongKuk
    • Applied Chemistry for Engineering
    • /
    • v.27 no.2
    • /
    • pp.221-226
    • /
    • 2016
  • Production of eco-friendly and biologically harmless materials is strongly required in all industries. In particular, reducing volatile organic compounds in coating processes is extremely important to secure worker's safety. During recent two decades, extensive research works on water-borne polyurethane dispersion (PUD) have been continuously developed as an alternative to solvent-borne polyurethane. However, PUD was shown inferior mechanical properties to the organic solvent-borne polyurethane due to a limit to the molecular weight increase, which resulted in the limit of applications. To overcome this drawback, several approaches have been examined such as polymer blends and thermal/radiation induced crosslinking. Among these methods, the radiation curing system was suitable for industrialization because of the high crosslinking density and fast curing speed. In this study, we overcame the drawback for PUD via introducing benzophenone radiation curable units to PUD. We synthesized PUD films which possessed good dispersion in water for 30 days, increased Tg and Td more than $5^{\circ}C$ after UV curing film as well as improved young's modulus more than double.

Preparation of Cellulose-Based Edible Film and its Physical Characteristics (Cellulose를 이용한 가식성(可食性) Film의 제조와 물리적 특성연구)

  • Song, Tae-Hee;Kim, Chul-Jai
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.1-7
    • /
    • 1996
  • Three formulations were used to prepare the cellulose-based edible films consisting of hydrocolloid and lipids; film A made by coating method, films B and C by emulsion method, which were formed in a thin layer glass plate and then dried. Films A, B and C were all approximately 0.03 mm thick with 1-3% moisture, 59-68% lipid, and almost whitish color. Film A was better in tensile strength, and lipids affected water vapor permeability on three films, in which films A and B did not differ significantly. Water vapor permeability of film A did not change but those of films B and C decreased significantly after storage for 8 weeks at $-15^{\circ}C$. Oxygen transmission rate and oxygen permeability of films A and C did not differ and changed significantly after 8-week storage at $-15^{\circ}C$. Under scanning electron microscope (SEM) observation on the structural characteristics of each film, film A indicated relatively uniform and smooth surface coatings of beeswax, while films B and C had individual lipid crystals and could be discerned. As a result, film A was better than films B and C in respect of physical properties, but the selection of useful film depended upon which physical property was more functional. Moreover, it was desirable in some cases for using films B and C because of their easiness of preparation and cold storage durability. It will be further needed to investigate how to formulate films B and C to have more unique surface characteristics, and to reduce water vapor and oxygen transmission rates.

  • PDF

The Development of High Pressure Long Distance Fire-fighting Hose with Phosphorescent Performance (축광 성능을 갖는 고압용 장거리 호스 개발에 관한 연구)

  • Han, Yong-Taek;Na, Byung-Gyun;Choi, Jin-Seong;Min, Se-Hong
    • Fire Science and Engineering
    • /
    • v.31 no.5
    • /
    • pp.63-69
    • /
    • 2017
  • This study describes the development of a long-distance hose for ultra-high pressure operation, which can be used in conjunction with an ultra-high pressure pump and can be effectively applied to the fire suppression of high-rise buildings and a long, large tunnels. Also, it has phosphorescent properties, which can help to secure the withdrawal route of the fire-fighters when they are threatened by the fire. We developed an ultra-high pressure hose aiming at a pressure of 3 MPa and a flow rate of 2000 lpm and developed an ultra-high pressure fire hose that can withstand this very high pressure by using a double jacket, triple polyurethane coating and warf (Wp) of 52. In order to ensure the performance of the developed ultra-high pressure hose, its structure, appearance, leakage at high pressure, length and elongation were inspected by a certified certification agency, who also subjected it to a peeling test, friction test, breaking pressure test and free fall test. Also, it was studied in addition to the luminescent high-pressure hose for fire-fighting. In the phosphorescence test, the luminance measurement value was more than the reference value of the luminance test after 40 minutes, which confirmed that its performance was satisfactory for fire-fighting products. In the future, if such an ultra-high pressure fire hose were commercialized and applied in the field, it could contribute to securing improved fire suppression and safer exit from fires, as compared to the fire hoses currently used in the suppression of fires in skyscraper buildings and long tunnels.

Microstructures and Hardness of Al-Si Coated 11%Cr Ferritic Stainless Steel, 409L GTA Welds (Al-Si 용융도금된 11%Cr 페라이트 스테인리스강, STS409L GTA 용접부의 미세조직과 경도)

  • Park, Tae-Jun;Kong, Jong-Pan;Na, Hye-Sung;Kang, Chung-Yun;Uhm, Sang-Ho;Kim, Jeong-Kil;Woo, In-Su;Lee, Jong-Sub
    • Journal of Welding and Joining
    • /
    • v.28 no.3
    • /
    • pp.92-98
    • /
    • 2010
  • Ferritic stainless steels, which have relatively small thermal expansion coefficient and excellent corrosion resistance, are increasingly being used in vehicle manufacturing, in order to increase the lifetime of exhaust manifold parts. But, there are limits on use because of the problem related to cosmetic resistance, corrosions of condensation and high temperature salt etc. So, Aluminum-coated stainless steel instead of ferritic stainless steel are utilized in these parts due to the improved properties. In this investigation, Al-8wt% Si alloy coated 409L ferritic stainless steel was used as the base metal during Gas Tungsten Arc(GTA) welding. The effects of coated layer on the microstructure and hardness were investigated. Full penetration was obtained, when the welding current was higher than 90A and the welding speed was lower than 0.52m/min. Grain size was the largest in fusion zone and decreased from near HAZ to base metal. As welding speed increased, grain size of fusion zone decreased, and there was no big change in HAZ. Hardness had a peak value in the fusion zone and decreased from the bond line to the base metal. The highest hardness in the fusion zone resulted from the fine re-precipitation of the coarse TiN and Ti(C, N) existed in the base metal during melting and solidification process and the presence of fine $Al_2O_3$ and $SiO_2$ formed by the migration of the elements, Al and Si, from the melted coating layer into the fusion zone.

Biogenic fabrication and characterization of silver nanoparticles using aqueous-ethanolic extract of lichen (Usnea longissima) and their antimicrobial activity

  • Siddiqi, Khwaja Salahuddin;Rashid, M.;Rahman, A.;Tajuddin, Tajuddin;Husen, Azamal;Rehman, Sumbul
    • Biomaterials Research
    • /
    • v.22 no.4
    • /
    • pp.328-336
    • /
    • 2018
  • Background: Biogenic fabrication of silver nanoparticles from naturally occurring biomaterials provides an alternative, eco-friendly and cost-effective means of obtaining nanoparticles. It is a favourite pursuit of all scientists and has gained popularity because it prevents the environment from pollution. Our main objective to take up this project is to fabricate silver nanoparticles from lichen, Usnea longissima and explore their properties. In the present study, we report a benign method of biosynthesis of silver nanoparticles from aqueous-ethanolic extract of Usnea longissima and their characterization by ultraviolet-visible (UV-vis), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) analyses. Silver nanoparticles thus obtained were tested for antimicrobial activity against gram positive bacteria and gram negative bacteria. Results: Formation of silver nanoparticles was confirmed by the appearance of an absorption band at 400 nm in the UV-vis spectrum of the colloidal solution containing both the nanoparticles and U. longissima extract. Poly(ethylene glycol) coated silver nanoparticles showed additional absorption peaks at 424 and 450 nm. FTIR spectrum showed the involvement of amines, usnic acids, phenols, aldehydes and ketones in the reduction of silver ions to silver nanoparticles. Morphological studies showed three types of nanoparticles with an abundance of spherical shaped silver nanoparticles of 9.40-11.23 nm. Their average hydrodynamic diameter is 437.1 nm. Results of in vitro antibacterial activity of silver nanoparticles against Staphylococcus aureus, Streptococcus mutans, Streptococcus pyrogenes, Streptococcus viridans, Corynebacterium xerosis, Corynebacterium diphtheriae (gram positive bacteria) and Escherichia coli, Klebsiella pneuomoniae and Pseudomonas aeruginosa (gram negative bacteria) showed that it was effective against tested bacterial strains. However, S. mutans, C. diphtheriae and P. aeruginosa were resistant to silver nanoparticles. Conclusion: Lichens are rarely exploited for the fabrication of silver nanoparticles. In the present work the lichen acts as reducing as well as capping agent. They can therefore, be used to synthesize metal nanoparticles and their size may be controlled by monitoring the concentration of extract and metal ions. Since they are antibacterial they may be used for the treatment of bacterial infections in man and animal. They can also be used in purification of water, in soaps and medicine. Their sustained release may be achieved by coating them with a suitable polymer. Silver nanoparticles fabricated from edible U. longissima are free from toxic chemicals and therefore they can be safely used in medicine and medical devices. These silver nanoparticles were stable for weeks therefore they can be stored for longer duration of time without decomposition.

Automotive Pre-primed Coatings with Automotive Structural Adhesive for Non-weldable Binding Process (자동차 구조용 접착제를 이용한 자동차용 Pre-primed 도료의 비용접식 접합공정 적용)

  • Moon, Je-Ik;Lee, Yong-Hee;Kim, Hyun-Joong;Noh, Seung Man;Nam, Joon Hyun;Kim, Min-Su;Kim, Jun-Ki;Kim, Jong-Hoon
    • Journal of Adhesion and Interface
    • /
    • v.12 no.3
    • /
    • pp.99-104
    • /
    • 2011
  • Currently, automotive pre-primed coatings has been developed to overcome environmental regulations and to reduce manufacturing cost in automotive industry. By these reasons, an automotive pre-primed system has been investigated to remove the wash and pre-treatment process using a roll coating application. It is required to develop non-weldable pre-primed system for automotive structural adhesives, because pre-primed sheet coated with organic compounds is hard to be assembled by welding process. Primer 1 (polyester type) and primer 2 (urethane type) were designed to satisfy flexibility and formability for non-weldable pre-primed system. According to the results of physical property test of the primers, adhesion test such as single-lap shear test and T-peel test, primer 1 (polyester type) had better physical properties such as pencil hardness, solvent resistance, flexibility and adhesion with automotive adhesive than that of primer 2 (polyurethane type). In addition, the possibility of the non-weldable pre-primed system was applicable to automotive assembly process in place of welding process.

The Development of Fiber-Optic Hydrogen Gas Sensor for Non-Destructive Test Application (비파괴 검사 응용을 위한 광섬유 수소 가스 센서의 개발)

  • 윤의중;정명희
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.6
    • /
    • pp.380-387
    • /
    • 1998
  • In this paper, a sensor material with Fe/Zr multilayer thin film, in which the change in the magnetization and strain with hydrogenation is maximized, were developed. Compositionally modulated (CM) Fe/Zr multilayers with a $Fe_{80}Zr_{20}$ composition and modulation wavelengths ($\lambda$) $3~50{\AA}$ were deposited by sequentially sputtering (RF diode) elemental Fe and Zr targets. The films were electrolytically hydrogenated to select the optimum Fe/Zr multilayers that show the maximum increases in the magnetization and strain with hydrogenation. The changes in the magnetic properties of the thin films after hydrogenation, were measured using a hysteresis graph and a vibrating sample magnetometer (VSM), and the strains induced in the films by hydrogenation were also measured using a laser heterodyne interferometer (LHI). The optimum sensor material selected was incorporated in a fiber-optic hydrogen sensor (that can sense indirectly amount of hydrogen injected) by depositing it directly on the sensing arm of a single-mode fiber Michelson interferometer. The developed sensor holds significant promise for non-destructive test evaluation (NDE) applications because it is expected to be useful for detecting easily and accurately the subsurface corrosion in structural systems.

  • PDF

Adhesion and Lifetime Extension Properties of Electrical Conductive Paint Stored under of Nitrogen Atmosphere (질소환경에서 보관된 전기전도성 페인트의 접착 및 수명연장 특성)

  • Shin, Pyeong-Su;Kim, Jong-Hyun;Baek, Yeong-Min;Park, Ha-Seung;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.20 no.1
    • /
    • pp.9-14
    • /
    • 2019
  • The change of three different reagents for electrical conductive paint using aircraft coating with elapsing time of exposure to different condition was investigated. Three different reagents were poured into the vial bottles, stored in air condition and room temperature and observed with elapsing days. In addition, adhesion property of paint was tried using cross cut tape test after storage of $N_2$ atmosphere. The weight of each different reagent was measured along with elapsing time. To confirm the change of chemical component with exposure of air atmosphere, FT-IR was performed. The weight of part A and Part B decreased slightly whereas the weight of part C decreased rapidly and the precipitation was remained. The part B was cured after exposure of $N_2$ atmosphere and the 2250 cm-1 from FT-IR peak decreased slowly at the same time. It was considered that the water contained in air accelerated the reaction of -NCO functional groups and it caused the curing whereas $N_2$ atmosphere not contained water and it resulted in the retardancy of curing.