• Title/Summary/Keyword: coating properties

Search Result 2,855, Processing Time 0.034 seconds

Influence of the Fluorine-doping Concentration on Nanocrystalline ZnO Thin Films Deposited by Sol-gel Process

  • Yoon, Hyunsik;Kim, Ikhyun;Kang, Daeho;Kim, Soaram;Kim, Jin Soo;Son, Jeong-Sik;Leem, Jae-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.204.2-204.2
    • /
    • 2013
  • Wide band gap II-VI semiconductors have attracted the interest of many research groups during the past few years due to the possibility of their applications in light-emitting diodes and laser diodes. Among the II-VI semiconductors, ZnO is an important optoelectronic device material for use in the violet and blue regions because of its wide direct band gap (Eg ~3.37 eV) and large exciton binding energy (60 meV). F-doped ZnO (FZO) and undoped ZnO thin films were grown onto quartz substrate by the sol-gel spin-coating method. The doping level in the solution, designated by F/Zn atomic ratio of was varied from 0 to 5 in 1 steps. To investigate the effects of the structure and optical properties of FZO thin films were investigated using X-ray diffraction (XRD), UV-visible spectroscopy, and photoluminescence (PL). In the XRD, the residual stress, FWHM, bond length, and average grain size were changed with increasing the doping concentration. For the PL spectra, the high INBE/IDLE ratio of the FZO thin films doping concentration at 1 at.% than the other samples.

  • PDF

Characteristics of TiAlN Film on Different Buffer Layer by D.C Magnetron Sputter (D.C magnetron sputter법으로 증착된 TiAlN의 중간층에 따른 특성연구)

  • Kim, Myoung-Ho;Lee, Doh-Jae;Lee, Kwang-Min;Kim, Woon-Sub;Kim, Min-Ki;Park, Burm-Su;Yang, Kook-Hyun
    • Korean Journal of Materials Research
    • /
    • v.18 no.10
    • /
    • pp.558-563
    • /
    • 2008
  • TiAlN films were deposited on WC-5Co substrates with different buffer layers by D.C. magnetron sputtering. The films were evaluated by microstructural observations and measuring of preferred orientation, hardness value, and adhesion force. As a process variable, various buffer layers were used such as TiAlN single layer, TiAlN/TiAl, TiAlN/TiN and TiAlN/CrN. TiAlN coating layer showed columnar structures which grew up at a right angle to the substrates. The thickness of the TiAlN coating layer was about $1.8{\mu}m$, which was formed for 200 minutes at $300^{\circ}$. XRD analysis showed that the preferred orientation of TiAlN layer with TiN buffer layer was (111) and (200), and the specimens of TiAlN/TiAl, TiAlN/CrN, TiAlN single layer have preferred orientation of (111), respectively. TiAlN single layer and TiAlN/TiAl showed good adhesion properties, showing an over 80N adhesion force, while TiAlN/TiN film showed approximately 13N and the TiAlN/CrN was the worst case, in which the layer was destroyed because of high internal residual stress. The value of micro vickers hardness of the TiAlN single layer, TiAlN/TiAl and TiAlN/TiN layers were 2711, 2548 and 2461 Hv, respectively.

Photochemical Reaction and Characterization of TiO2 Thin Film Photocatalyst Fabricated by Sol-Gel Method (졸-겔 방법으로 제조한 TiO2박막 광촉매의 물성 분석과 광화학 반응)

  • Lim, Hee-Sup;Lee, Yong-Hee;Son, Jong-Yun;Yu, Yun-Sik;Lee, Dong-Hwan;Sung, Dae-Dong
    • Applied Chemistry for Engineering
    • /
    • v.16 no.2
    • /
    • pp.187-193
    • /
    • 2005
  • The photocatalyst $TiO_2$ thin film was made from titanium (IV) isopropoxide, ethanol, and HCl by sol-gel method. The surface observation by SEM showed the sample that was coated 5 times at $500^{\circ}C$ had good properties. The component ratio, in atom% of O : Ti by EDX analysis, of 61 : 39 by spin coating was superior than dip coating. It was found that crystal structure changed from anatase phase to rutile phase as a function of the temperature of thin film fabrication, and this was measured by XRD. The photolysis efficiency of total organic compounds (TOC) by lighting UV beam on $TiO_2$ thin film showed 20%~65% within 1 h, and decreased slowly thereafter.

Analysis of Thermal Oxide Behavior with Isothermal Degradation of TBC Systems Applied to Single Crystal Superalloy (단결정 초내열합금에 적용된 열차폐코팅의 등온열화에 따른 산화물 거동분석)

  • Kim, K.;Wee, S.;Choi, J.;Kim, D.;Song, H.;Lee, J.;Seok, C.S.;Chung, E.S.;Kwon, S.H.
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.4
    • /
    • pp.1-5
    • /
    • 2019
  • In the field of combined cycle power generation, thermal barrier coating(TBC) protects the super-heat-resistant alloy, which forms the core component of the gas turbine, from high temperature exposure. As the turbine inlet temperature(TIT) increases, TBC is more important and durability performance is also important when considering maintenance cost and safety. Therefore, studies have been made on the fabrication method of TBC and super-heat-resistant alloy in order to improve the performance of the TBC. In recent years, due to excellent properties such as high temperature creep resistance and high temperature strength, turbine blade material have been replaced by a single crystal superalloy, however there is a lack of research on TBC applied to single crystal superalloy. In this study, to understand the isothermal degradation performance of the TBC applied to the single crystal superalloy, isothermal exposure test was conducted at various temperature to derive the delamination life. The growth curve of thermally grown oxide(TGO) layer was predicted to evaluate the isothermal degradation performance. Also, microstructural analysis was performed by scanning electron microscope(SEM) and energy dispersive X-ray spectroscopy (EDS) to determine the effect of mixed oxide formation on the delamination life.

Improved Coating of PEDOT : PSS onto CVD Graphene by the Addition of PVA (PVA의 첨가에 의한 CVD 그래핀상 PEDOT : PSS의 코팅성 향상)

  • Park, Min Ui;Shin, Chaeyeon;Kim, Hyeji;Kim, Seung Yeon;Choi, Young Ju;Chung, Dae-won
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.734-739
    • /
    • 2018
  • We successfully coated poly(3,4-ethylenedioxythiophene) : poly(styrene sulfonate) (PEDOT : PSS) on CVD graphene by adding poly(vinyl alcohol) (PVA) to PEDOT : PSS. Extensive studies on the wettability of coating solutions and electrical properties of formed films led us to conclude that PVA with 89% of the degree of saponification and the molecular weight of less than $100,000gmol^{-1}$ produced optimum results. Furthermore, the optimum content of PVA was found to be 5% of PEDOT : PSS by the solid weight. The film coated by PEDOT : PSS with PVA on CVD graphene displayed a conspicuous improvement in the surface roughness, adhesive property, bending durability and stability in resistance at $160^{\circ}C$, compared to those of using CVD graphene films.

A Study on the Tribological Characteristics of Low Friction Coating Deposited on SUJ2 Bearing Steel (고탄소크롬 베어링강 2종(SUJ2) 베어링강에 증착된 저마찰 코팅의 트라이볼로지적 특성 연구)

  • Kang, Kyung-Mo;Shin, Dong-Gap;Park, Young-Hun;Kim, Se-Woong;Kim, Dae-Eun
    • Tribology and Lubricants
    • /
    • v.34 no.6
    • /
    • pp.254-261
    • /
    • 2018
  • In order to reduce resistance torque and energy loss, minimizing friction between race surface and rolling elements of a bearing is necessary. Recently, to reduce friction in bearing element, solid lubricant coating for the bearing raceway surface has been receiving much attention. Considering the operating conditions of real bearings, verifying the effect of solid lubricant coatings under extreme conditions of high load that is more than 1 GPa is necessary. In this study, we evaluated the friction and wear characteristics of SUJ2 bearing steels deposited by carbon-based coatings (Si-DLC, ta-C), $MoS_2$ and graphite. In case of $MoS_2$ and graphite coatings, different surface treatments were applied to the coatings to verify the effect of surface treatment. A pin-on-disc type tribotester was used to evaluate the tribological characteristics of the coatings. It was possible to quantitatively estimate the friction and wear characteristics of solid lubricant under dry and lubrication conditions. The carbon-based coatings improved the friction and wear properties of SUJ2 bearing steels under the high load condition, but $MoS_2$ and graphite coatings were not suitable for high load conditions due to its low hardness. Different friction and wear behaviors were found for different substrate surface treatment method. Also, it was confirmed that solid lubricant coatings had a more positive effect than just applying the lubricant for improving the tribological characteristics.

Preparation and Physical Properties of Aqueous Polyurethane Based on Mono Methyl Ether for Skin Layer Coating (Skin layer 코팅에 사용되는 Mono Methyl Ether 기반 수성 폴리우레탄의 제조 및 물리적 성질)

  • Lee, Joo-Youb
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.524-530
    • /
    • 2019
  • In this study, polyether polyol polypropylene glycol and isophorone diisocyanate (IPDI) were synthesized based on polyrupopylene mono methyl eher (PM) for the synthesis of water - soluble polyurethane for coating on leather skin layer. After synthesis of prepolymer, PM was added at $40^{\circ}C$ to 1M, 2M, 3M, and 4M to inhibit the viscosity rise, and neutralization reaction and chain extension reaction were carried out to prepare polyurethane samples. According to the measurement results of the tensile strength, elongation and adhesive strength of the prepared sample, the tensile strength was 2.109 kgf / mm2 for PM 1M, 1.721kgf / mm2 for 4M, elongation was 496% for PM 1M, 522% for 4M, adhesion was 1.114 kgf / cm for PM 1M and 0.99 kgf / cm for 4M.

Development of Solid Lubricants for Oil-less Bush (오일리스 부시용 고체윤활제 개발)

  • Kong, Hosung;Han, Hung-Gu;Kim, Jin Uk;Kim, Kyoung Seok;Park, Jong Sik
    • Tribology and Lubricants
    • /
    • v.35 no.2
    • /
    • pp.87-93
    • /
    • 2019
  • This work aims to develop a dry lubricant for oilless bush, especially a solid lubricant, thereby creating a coating method with improved properties of anti-friction and load-carrying capacity without oil lubrication. In this work, spherical-shaped powders of thermosetting resin such as polyimide (PI) are mixed with a binder matrix obtained by mixing a fluorocarbon compound resin such as Polytetrafluoroethylene (PTFE) or Ethylene tetra fluoro ethylene (ETFE) with itself or with a non-fluorocarbon thermoplastic resin such as Polyether ether ketone (PEEK). And these dry lubricant mixtures are thickly coated (200-300 mm in the thickness) on the inner surface of the bush by using a wet-typed air-spray deposition method. It was found that the load-carrying capacity of the solid lubricant for excavator bush (60 mm in diameter) that operates under a high load condition (at 40 MPa) is greatly improved owing to the spherical-shaped powders of thermosetting resin. In addition, the coefficient of friction at the sliding surface is also reduced less than 0.1. Thick coating also lowers the contact stress at the edge of a bush that results in better tribological performances. The result suggests that the lubrication performance and durability life of the bush can be remarkably improved even without lubrication (oil or grease).

Study on Optical Characteristics of Nano Hollow Silica with TiO2 Shell Formation

  • Roh, Gi-Yeon;Sung, Hyeong-Seok;Lee, Yeong-Cheol;Lee, Seong-Eui
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.1
    • /
    • pp.98-103
    • /
    • 2019
  • Optical filters to control light wavelength of displays or cameras are fabricated by multi-layer stacking process of low and high index thin films. The process of multi-layer stacking of thin films has received much attention as an optimal process for effective manufacturing in the optical filter industry. However, multi-layer processing has disadvantages of complicated thin film process, and difficulty of precise control of film morphology and material selection, all of which are critical for transmittance and coloring effect on filters. In this study, the composite $TiO_2$, which can be used to control of UV absorption, coated on nano hollow silica sol, was synthesized as a coating material for optical filters. Furthermore, systematic analysis of the process parameters during the chemical reaction, and of the structural properties of the coating solutions was performed using SEM, TEM, XRD and photo spectrometry. From the structural analysis, we found that the 85 nm nano hollow silica with 2.5 nm $TiO_2$ shell formation was successfully synthesized at proper pH control and titanium butoxide content. Photo luminescence characteristics, excited by UV irradiation, show that stable absorption of 350 nm-light, correlated with a 3.54 eV band gap, existed for the $TiO_2$ shell-nano hollow silica reacted with 8.8 mole titanium butoxide solution. Transmittance observed on substrate of the $TiO_2$ shell-nano hollow silica showed effective absorption of 200-300 nm UV light without deterioration of visible light transparency.

Antiviral Effects of Titanium Dioxide Photocatalyst Treated Films against Highly Pathogenic Avian Influenza (고병원성 조류인플루엔자(H5N1)에 대한 이산화티타늄 광촉매 처리 필름의 항바이러스성 연구)

  • Lee, Sang-Do;Park, Hyun
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.4
    • /
    • pp.201-206
    • /
    • 2021
  • Damage to the highly pathogenic avian influenza virus(H5N1) continues to increase, but there is a lack of antiviral research. In this study, we analyze antiviral properties on H5N1 by coating Cu/TiO2 photocatalyst on polyethylene films. The specimen was manufactured a photocatalyst master batch and coated both sides of the 3-layer polyethylene fabric at 280℃ from the extrusion coating machine. The results showed a 99.9% decrease in the Staphylococcus aureus and Escherichia coli. In particular, H5N1 type highly pathogenic avian influenza viruses, which is capable of human infection, has been found to decrease 99.9% within five minutes of contact with Cu/TiO2 films. Antibacterial effects of films coated with photocatalyst are known, but this study also confirmed the antiviral effects.