• Title/Summary/Keyword: coating properties

Search Result 2,855, Processing Time 0.029 seconds

High Temperature Grain Growth Behavior of Aerosol Deposited BaTiO3 Film on (100), (110) Oriented SrTiO3 Single Crystal (상온분사분말공정에 의해 SrTiO3 (100), (110) Seed에 코팅된 BaTiO3의 고온 성장 거동 분석)

  • Lim, Ji-Ho;Lee, Seung Hee;Kim, Ki Hyun;Ji, Sung-Yub;Jung, Suengwoon;Park, Chun-kil;Jung, Han-Bo;Jeong, Dae-Yong
    • Korean Journal of Materials Research
    • /
    • v.29 no.11
    • /
    • pp.684-689
    • /
    • 2019
  • Single crystals, which have complexed composition, are fabricated by solid state grain growth. However, it is hard to achieve stable properties in a single crystal due to trapped pores. Aerosol deposition (AD) is suitable for fabrication of single crystals with stable properties because this process can make a high density coating layer. Because of their unique features (nano sized grains, stress inner site), it is hard to fabricate single crystals, and so studies of grain growth behavior of AD film are essential. In this study, a $BaTiO_3$ coating layer with ${\sim}9{\mu}m$ thickness is fabricated using an aerosol deposition method on (100) and (110) cut $SrTiO_3$ single crystal substrates, which are adopted as seeds for grain growth. Each specimen is heat-treated at various conditions (900, 1,100, and $1,300^{\circ}C$ for 5 h). $BaTiO_3$ layer shows different growth behavior and X-ray diffraction depending on cutting direction of $SrTiO_3$ seed. Rectangular pillars at $SrTiO_3$ (100) and laminating thin plates at $SrTiO_3$ (110), respectively, are observed.

Development of Composite Bipolar Plate for Vanadium Redox Flow Battery (바나듐 레독스 흐름 전지용 복합재료 분리판 개발)

  • Lim, Jun Woo
    • Composites Research
    • /
    • v.34 no.3
    • /
    • pp.148-154
    • /
    • 2021
  • Carbon/epoxy composite bipolar plate (BP) is a BP that is likely to replace existing graphite bipolar plate of vanadium redox flow cell (VRFB) due to its high mechanical properties and productivity. Multi-functional carbon/epoxy composite BP requires graphite coating or additional surface treatment to reduce interfacial contact resistance (ICR). However, the expanded graphite coating has the disadvantage of having low durability under VRFB operating conditions, and the surface treatments incur additional costs. In this work, an excessive resin absorption method is developed, which uniformly removes the resin rich area on the surface of the BP to expose carbon fibers by applying polyester fabric. This method not only reduces ICR by exposing carbon fibers to BP surfaces, but also forms a unique ditch pattern that can effectively hold carbon felt electrodes in place. The acidic environmental durability, mechanical properties, and gas permeability of the developed carbon/epoxy composite BP are experimentally verified.

Influence of Fluorine Doping on Hardness and Compressive Stress of the Diamond-Like Carbon Thin Film

  • Sayed Mohammad Adel Aghili;Raheleh Memarzadeh;Reza Bazargan Lari;Akbar Eshaghi
    • Korean Journal of Materials Research
    • /
    • v.33 no.4
    • /
    • pp.124-129
    • /
    • 2023
  • This study assessed the influences of fluorine introduced into DLC films on the structural and mechanical properties of the sample. In addition, the effects of the fluorine incorporation on the compressive stress in DLC films were investigated. For this purpose, fluorinated diamond-like carbon (F-DLC) films were deposited on cobalt-chromium-molybdenum substrates using radio-frequency plasma-enhanced chemical vapor. The coatings were examined by Raman scattering (RS), Attenuated total reflectance Fourier transform infrared spectroscopic analysis (ATR-FTIR), and a combination of elastic recoil detection analysis and Rutherford backscattering (ERDA-RBS). Nano-indentation tests were performed to measure hardness. Also, the residual stress of the films was calculated by the Stony equation. The ATR-FTIR analysis revealed that F was present in the amorphous matrix mainly as C-F and C-F2 groups. Based on Raman spectroscopy results, it was determined that F made the DLC films more graphitic. Additionally, it was shown that adding F into the DLC coating resulted in weaker mechanical properties and the F-DLC coating exhibited lower stress than DLC films. These effects were attributed to the replacement of strong C = C by feebler C-F bonds in the F-DLC films. F-doping decreased the hardness of the DLC from 11.5 to 8.8 GPa. In addition, with F addition, the compressive stress of the DLC sample decreased from 1 to 0.7 GPa.

Adsorption Properties of Paint Mixed with Powdered Activated Carbon According to the Number of Coatings (분말활성탄을 혼합한 도료의 도장횟수에 따른 흡착 특성)

  • Choi, Byung-Cheol;Kyoung, In-Soo;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.25-26
    • /
    • 2021
  • Due to COVID-19, the spread of non-face-to-face culture is increasing the time spent indoors. Accordingly, it is necessary to reduce indoor air pollutants. Also, among building materials, there are paints. As the number of coatings increases, the coating film becomes thick, and there is a risk of cracking and falling off. Therefore, this study is to examine the adsorption properties of indoor air pollutants according to the number of coatings of a paint mixed with powdered activated carbon. In the experimental plan, the addition ratio of powdered activated carbon was selected as 30%, and the number of coatings was selected as primcoating, second coat, and finishing coat, and the concentration of formaldehyde and volatile organic compounds were measured. As a result, as the number of coatings increased, the concentration of formaldehyde and volatile organic compounds tended to decrease. This is considered to be due to the fact that not only the physical adsorption acted by the internal pores of the powdered activated carbon, but also because a lot of powdered activated carbon was present on the painted surface as the coating film was formed. However, since it is judged that there is an error in the concentration due to the inflow of external air as the chamber cover is opened to put the test object in the adsorption test process, it is considered that the experimental method needs to be supplemented.

  • PDF

Effect of Water-Containing Conditions on Concrete Substrates on Defects of Polyurethane-based Waterproofing Materials (콘크리트 바탕면의 함수조건이 폴리 우레탄계 방수재 하자에 미치는 영향)

  • Lee, Gun-Cheol;Kim, Jae-Yeob;Kim, Young-Min;Hong, Sung-Rok;Kim, Young-Sam;Shin, Hong-Chol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • This study is to analyze the cause of the defects in polyurethane waterproofing, a material commonly used on the roof of buildings, and to determine if it has a relation with the curing conditions of humidity and temperature and the moisture content of the base structure. As a result, it was confirmed that the waterproofing coating did not adhere when the moisture content of the base plate was 10% or more. When the temperature and humidity conditions were 20℃ and 80%RH, none of the properties deteriorate but when the temperature was 40℃, 60%RH, air bubbles were formed on the surface, and at 40℃ and 80%RH, the basic properties of the dry coating film were less than the KS F 3211 performance standard.

Electrodeposition of Ni-W/Al2O3 Nano-Composites and the Influence of Al2O3 Incorporation on Mechanical and Corrosion Resistance Behaviours

  • M. Ramaprakash;R. Nivethida;A. Muthukrishnan;A. Jerom Samraj;M. G. Neelavannan;N. Rajasekaran
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.377-387
    • /
    • 2023
  • Ni-W/Al2O3 nano-composites were electrodeposited on mild steel substrate for mechanical and corrosion resistance applications. This study focused on the preparation of Ni-W/Al2O3 nano-composite coating with various quantity of Al2O3 incorporations. The addition of Al2O3 in the electrolytes were varied from 1-10 g/L in electrolytes and the Al2O3 incorporation in Ni-W/Al2O3 nano-composite coatings were obtained from 1.82 to 13.86 wt.%. The incorporation of Al2O3 in Ni-W alloy matrix influenced the grain size, surface morphology and structural properties were observed. The distributions of Al2O3 particle in alloy matrix were confirmed using electron microscopy (FESEM and TEM) and EDAX mapping analysis. The crystal structure informations were studied using X-ray diffraction method and it confirms that the deposits having cubic crystal structure. The better corrosion rate (0.87 mpy) and microhardness (965 HV) properties were obtained for the Ni-W/Al2O3 nano-composite coating with 13.86 wt.% of Al2O3 incorporations.

Dielectric properties of KTN(80/20) thin films with pzt buffer layer for tunable microwave devices

  • Kyeong-Min Kim;Sam-Haeng Lee;Byeong-Jun Park;Joo-Seok Park;Sung-Gap Lee
    • Journal of Ceramic Processing Research
    • /
    • v.23 no.1
    • /
    • pp.29-32
    • /
    • 2022
  • K(Ta0.80Nb0.20)O3 films with Pb(Zr0.52Ti0.48)O3PZT buffer layer on Pt/Ti/SiO2/Si substrate were fabricated by sol-gel and spin-coating method. Structural and electrical properties were measured with variation of the sintering temperature, and the applicability to microwave materials was investigated. All K(Ta0.80Nb0.20)O3 films showed a cubic crystal structure. Average grain size was about 123~193 nm and average thickness of the K(Ta0.80Nb0.20)O3 films was approximately 366 nm. Through the AFM results, root mean square roughness (Rrms) of all K(Ta0.80Nb0.20)O3 films was around 6 nm. All K(Ta0.80Nb0.20)O3 films showed a tendency to increase dielectric loss as frequency increased. As the sintering temperature increased, tunability with an applied DC voltage indicated a decreasing tendency. Tunability and temperature coefficient of the K(Ta0.80Nb0.20)O3 film sintered at 700 ℃ showed good values of 22.1% at 10 V, -0.594/℃.

Effects of Duty Cycle and Pulse Frequency on the Microstructure and Mechanical Properties of TiAlN Coatings (듀티 싸이클 및 펄스 주파수가 TiAlN 코팅막의 미세구조와 기계적 특성에 미치는 영향에 관한 연구)

  • Chun, Sung-Yong;Hwang, Ju Yeon
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.447-452
    • /
    • 2014
  • This paper presents the effects of pulse plasma parameters such as duty cycle and pulse frequency on the properties of TiAlN coatings deposited by asymmetric bipolar pulsed DC magnetron sputtering systems. The results show that, with decreasing duty cycle and increasing pulse frequency, the coating morphology changes from a columnar structure to a dense structure with finer grains. Pulsed sputtered TiAlN coatings showed higher hardness, higher residual stress, and smaller grain sizes than did DC prepared TiAlN coatings. Moreover, residual stress and nanoindentation hardness of pulsed sputtered TiAlN coatings increased with increasing pulse frequency. Meanwhile, the surface roughness decreased continuously with increasing pulsed DC frequency up to 50 kHz.

Electrostatic Properties of N-Acetyl-Cysteine-Coated Gold Surfaces Interacting with ZrO2 Surfaces

  • Park, Jin-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.9
    • /
    • pp.2855-2860
    • /
    • 2012
  • The coating N-acetyl cysteine (NAC) on gold surfaces may be used to design the distribution of either gold particle adsorbed to the $ZrO_2$ surface or vice versa by adjusting the electrostatic interactions. In this study, it was performed to find out electrostatic properties of the NAC-coated-gold surface and the $ZrO_2$ surface. The surface forces between the surfaces were measured as a function of the salt concentration and pH value using the AFM. By applying the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory to the surface forces, the surface potential and charge density of the surfaces were quantitatively acquired for each salt concentration and each pH value. The dependence of the potential and charge density on the concentration was explained with the law of mass action, and the pH dependence was with the ionizable groups on the surface.

Research of Electrochemical Properties with Metal Sulfide Electrode for Lithium Batteries (리튬전지용 금속황화물 전극의 전기화학적 특성에 관한 연구)

  • RYU, HO SUK;KIM, IN SOO
    • Journal of Hydrogen and New Energy
    • /
    • v.31 no.1
    • /
    • pp.138-143
    • /
    • 2020
  • Metal sulfides are good candidates for cathode materials. Especially, iron sulfides and nickel sulfides have been demonstrated to be potential electrode materials among metal sulfides due to nontoxicity and high theoretical specific capacities. Electrochemical properties (capacity, cycle life, stability etc.) of Li/iron sulfides or nickel sulfides cell were improved by methode such as coating, doping of material, and nanoization of materials etc.