• Title/Summary/Keyword: coating method

Search Result 2,763, Processing Time 0.033 seconds

Effect of Au-ionic Doping Treatment on SWNT Flexible Transparent Conducting Films

  • Min, Hyeong-Seop;Jeong, Myeong-Seon;Choe, Won-Guk;Kim, Sang-Sik;Lee, Jeon-Guk
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.111.1-111.1
    • /
    • 2012
  • Interest in flexible transparent conducting films (TCFs) has been growing recently mainly due to the demand for electrodes incorporated in flexible or wearable displays in the future. Indium tin oxide (ITO) thin films, which have been traditionally used as the TCFs, have a serious obstacle in TCFs applications. SWNTs are the most appropriate materials for conductive films for displays due to their excellent high mechanical strength and electrical conductivity. In this work, the fabrication by the spraying process of transparent SWNT films and reduction of its sheet resistance on PET substrates is researched Arc-discharge SWNTs were dispersed in deionized water by adding sodium dodecyl sulfate (SDS) as surfactant and sonicated, followed by the centrifugation. The dispersed SWNT was spray-coated on PET substrate and dried on a hotplate. When the spray process was terminated, the TCF was immersed into deionized water to remove the surfactant and then it was dried on hotplate. The TCF film was then was doped with Au-ionic doping treatment, rinsed with deionized water and dried. The surface morphology of TCF was characterized by field emission scanning electron microscopy. The sheet resistance and optical transmission properties of the TCF were measured with a four-point probe method and a UV-visible spectrometry, respectively. This was confirmed and discussed on the XPS and UPS studies. We show that 87 ${\Omega}/{\Box}$ sheet resistances with 81% transmittance at the wavelength of 550nm. The changes in electrical and optical conductivity of SWNT film before and after Au-ionic doping treatments were discussed. The effect of Au-ion treatment on the electronic structure change of SWNT films was investigated by Raman and XPS.

  • PDF

Pulsed Terahertz Emission and Detection Properties from ZnTe Crystal (ZnTe 결정을 이용한 테라헤르츠파의 발생 및 검출 특성)

  • Jin, Yun-Sik;Jeon, Seuk-Gy;Kim, Keun-Ju;Sohn, Chae-Hwa;Jung, Sun-Shin
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.6
    • /
    • pp.553-559
    • /
    • 2005
  • Pulsed terahertz (THz) radiation was generated by optical rectification and detected by a fee space electro-optic sampling (FS-EOS) method. We used ZnTe (110) crystals for both generation and detection. By coating dielectric anti-reflection film on the ZnTe crystal surface, we can reduce the reflectance of a pump laser beam from $30\%$ to $2\%$, and the terahertz pulse amplitude increased $27\%$ compared with an uncoated crystal. A wider bandwidth of THz radiation was obtained by using a thinner crystal but the signal intensity was decreased in this case. And variations of THz radiation by changing orientation of the ZnTe crystal with respect to the pump (or probe) laser polarization, and by changing the power of the pump laser have also been investigated and discussed.

Metal-Semiconductor Contact Behavior of Solution-Processed ZnSnO Thin Film Transistors (용액법으로 제작된 ZnSnO 박막트랜지스터의 전극 물질에 따른 계면 접촉특성 연구)

  • Jeong, Young-Min;Song, Keun-Kyu;Woo, Kyoo-Hee;Jun, Tae-Hwan;Jung, Yang-Ho;Moon, Joo-Ho
    • Korean Journal of Materials Research
    • /
    • v.20 no.8
    • /
    • pp.401-407
    • /
    • 2010
  • We studied the influence of different types of metal electrodes on the performance of solution-processed zinc tin oxide (ZTO) thin-film transistors. The ZTO thin-film was obtained by spin-coating the sol-gel solution made from zinc acetate and tin acetate dissolved in 2-methoxyethanol. Various metals, Al, Au, Ag and Cu, were used to make contacts with the solution-deposited ZTO layers by selective deposition through a metal shadow mask. Contact resistance between the metal electrode and the semiconductor was obtained by a transmission line method (TLM). The device based on an Al electrode exhibited superior performance as compared to those based on other metals. Kelvin probe force microscopy (KPFM) allowed us to measure the work function of the oxide semiconductor to understand the variation of the device performance as a function of the types metal electrode. The solution-processed ZTO contained nanopores that resulted from the burnout of the organic species during the annealing. This different surface structure associated with the solution-processed ZTO gave a rise to a different work function value as compared to the vacuum-deposited counterpart. More oxygen could be adsorbed on the nanoporous solution-processed ZTO with large accessible surface areas, which increased its work function. This observation explained why the solution-processed ZTO makes an ohmic contact with the Al electrode.

Synthesis and Surface Properties of Hierarchical SiO2 Coating Layers by Forming Au Nanoparticles (금 나노입자 형성을 이용한 계층구조 SiO2 코팅층의 제조 및 표면 특성)

  • Kim, Ji Yeong;Kim, Eun-Kyeong;Kim, Sang Sub
    • Korean Journal of Materials Research
    • /
    • v.23 no.1
    • /
    • pp.53-58
    • /
    • 2013
  • Superhydrophobic $SiO_2$ layers with a micro-nano hierarchical surface structure were prepared. $SiO_2$ layers deposited via an electrospray method combined with a sol-gel chemical route were rough on the microscale. Au particles were decorated on the surface of the microscale-rough $SiO_2$ layers by use of the photo-reduction process with different intensities ($0.11-1.9mW/cm^2$) and illumination times (60-240 sec) of ultraviolet light. With the aid of nanoscale Au nanoparticles, this consequently resulted in a micro-nano hierarchical surface structure. Subsequent fluorination treatment with a solution containing trichloro(1H,2H,2H,2H-perfluorooctyl)silane fluorinated the hierarchical $SiO_2$ layers. The change in surface roughness factor was in good agreement with that observed for the water contact angle, where the surface roughness factor developed as a measure needed to evaluate the degree of surface roughness. The resulting $SiO_2$ layers revealed excellent repellency toward various liquid droplets with different surface tensions ranging from 46 to 72.3 mN/m. Especially, the micro-nano hierarchical surface created at an illumination intensity of $0.11mW/cm^2$ and illumination time of 60 sec showed the largest water contact angle of $170^{\circ}$. Based on the Cassie-Baxter and Young-Dupre equations, the surface fraction and work of adhesion for the micronano hierarchical $SiO_2$ layers were evaluated. The work of adhesion was estimated to be less than $3{\times}10^{-3}N/m$ for all the liquid droplets. This exceptionally small work of adhesion is likely to be responsible for the strong repellency of the liquids to the micro-nano hierarchical $SiO_2$ layers.

Characteristics of Mono Crystalline Silicon Solar Cell for Rear Electrode with Aluminum and Aluminum-Boron (Aluminum 및 Aluminum-Boron후면 전극에 따른 단결정 실리콘 태양전지 특성)

  • Hong, Ji-Hwa;Baek, Tae-Hyeon;Kim, Jin-Kuk;Choi, Sung-Jin;Kim, Nam-Soo;Kang, Gi-Hwan;Yu, Gwon-Jong;Song, Hee-Eun
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.34-39
    • /
    • 2011
  • Screen printing method is a common way to fabricate the crystalline silicon solar cell with low-cost and high-efficiency. The screen printing metallization use silver paste and aluminum paste for front and rear contact, respectively. Especially the rear contact between aluminum and silicon is important to form the back surface filed (Al-BSF) after firing process. BSF plays an important role to reduces the surface recombination due to $p^+$ doping of back surface. However, Al electrode on back surface leads to bow occurring by differences in coefficient of thermal expansion of the aluminum and silicon. In this paper, we studied the properties of mono crystalline silicon solar cell for rear electrode with aluminum and aluminum-boron in order to characterize bow and BSF of each paste. The 156*156 $m^2$ p-type silicon wafers with $200{\mu}m$ thickness and 0.5-3 ${\Omega}\;cm$ resistivity were used after texturing, diffusion, and antireflection coating. The characteristics of solar cells was obtained by measuring vernier callipers, scanning electron microscope and light current-voltage. Solar cells with aluminum paste on the back surface were achieved with $V_{OC}$ = 0.618V, JSC = 35.49$mA/cm^2$, FF(Fill factor) = 78%, Efficiency = 17.13%.

  • PDF

$SiN_x$ Film Deposited by Hot Wire Chemical Vapor Deposition Method for Crystalline Silicon Solar Cells (결정질 실리콘 태양전지 적용을 위한 HWCVD $SiN_x$ 막 연구)

  • Kim, Ha-Young;Park, Min-Kyeong;Kim, Min-Young;Choi, Jeong-Ho;Roh, Si-Cheol;Seo, Hwa-Il
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.3
    • /
    • pp.27-33
    • /
    • 2014
  • To develop high efficiency crystalline solar cells, the $SiN_x$ film for surface passivation and anti-reflection coating is very important and it is generally deposited by PECVD. In this paper, the $SiN_x$ film deposited by Hot-Wire chemical vapor deposition(HWCVD) that has no plasma damage was studied. First, to optimize the $SiN_x$ film deposition process, $SiH_4$ gas rate and substrate temperature were varied and then refractive index and thickness were measured. When $SiH_4$ gas rate was 22sccm and substrate temperature was $100^{\circ}C$, refractive index was 1.94 and higher than that of other process conditions. Second, the lifetime was measured by varying the annealing temperature and time. The annealing process was made from 5 to 30 minutes at $300{\sim}500^{\circ}C$. When the annealing temperature was $100^{\circ}C$ and time was 10minute, the lifetime was the highest. The lifetime of annealed samples was also measured after the firing process at $975^{\circ}C$. Although the lifetime of all samples was decreased by firing process, the lifetime of annealed samples before the firing process was higher than that of fired samples only. Finally, the characteristics of solar cells with HWCVD $SiN_x$ film were measured.

Improved On-off Property of SiO2 Embedded Polyfluorene Polymer-OLED (SiO2의 첨가를 통한 Polyfluorene계 Polymer-OLED의 발광 동작 개선 가능성)

  • Jeon, Byung Joo;Kim, Hyo Jun;Kim, Jong Su;Jeong, Yong Seok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.1
    • /
    • pp.40-44
    • /
    • 2017
  • The effect of weak dielectric silicone dioxide($SiO_2$) embedded in polyfluorene(PFO) emitting layer of polymer-based multi structure OLED was investigated. Indium tin oxide(ITO)/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS)/poly(9,9-di-n-octylfluorenyl-2,7-diyl)(PFO)/2,2,2"-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) (TPBi)/aluminum(Al) structure OLED was fabricated by spin-coating method. Applied electric field causes some effect on $SiO_2$ in PFO layer. Thus, interaction between polymers and affected $SiO_2$ might generate electrical and luminance properties change. Experimental results, show the reduced threshold voltage of 6 V(from 23 V to 17 V). The maximum current density was rather increased from $71A/m^2$ to $610A/m^2$ and maximum brightness was also increased from $7.19cd/m^2$ to $41.03cd/m^2$, 9 and 6 times each. Additionally we obtained colour broadening result due to the increasing of blue-green band emission. Consequently we observed that electrical and luminance properties are enhanced by adding $SiO_2$ and identified the possibility of controlling the emission colour of OLED device according to colour broadening.

  • PDF

Resistive Switching Effect of the $In_2O_3$ Nanoparticles on Monolayered Graphene for Flexible Hybrid Memory Device

  • Lee, Dong Uk;Kim, Dongwook;Oh, Gyujin;Kim, Eun Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.396-396
    • /
    • 2013
  • The resistive random access memory (ReRAM) has several advantages to apply next generation non-volatile memory device, because of fast switching time, long retentions, and large memory windows. The high mobility of monolayered graphene showed several possibilities for scale down and electrical property enhancement of memory device. In this study, the monolayered graphene grown by chemical vapor deposition was transferred to $SiO_2$ (100 nm)/Si substrate and glass by using PMMA coating method. For formation of metal-oxide nanoparticles, we used a chemical reaction between metal films and polyamic acid layer. The 50-nm thick BPDA-PDA polyamic acid layer was coated on the graphene layer. Through soft baking at $125^{\circ}C$ or 30 min, solvent in polyimide layer was removed. Then, 5-nm-thick indium layer was deposited by using thermal evaporator at room temperature. And then, the second polyimide layer was coated on the indium thin film. After remove solvent and open bottom graphene layer, the samples were annealed at $400^{\circ}C$ or 1 hr by using furnace in $N_2$ ambient. The average diameter and density of nanoparticle were depending on annealing temperature and times. During annealing process, the metal and oxygen ions combined to create $In_2O_3$ nanoparticle in the polyimide layer. The electrical properties of $In_2O_3$ nanoparticle ReRAM such as current-voltage curve, operation speed and retention discussed for applictions of transparent and flexible hybrid ReRAM device.

  • PDF

Binding of Vaccine and Poly(DL-lactide-co-glycolide) Nanoparticle Modified with Anionic Surfactant (음이온성 유화제로 수식된 폴리락티드/글리코리드 공중합체 나노 입자와 백신의 결합성)

  • Choi, Min-Soo;Park, Eun-Seok;Chi, Sang-Cheol;Shin, Byung-Cheol
    • Journal of Pharmaceutical Investigation
    • /
    • v.34 no.3
    • /
    • pp.177-183
    • /
    • 2004
  • Recently, studies on intranasal mucosa delivery of influenza vaccine have been actively developed because of lack of pain and ease of administration. We studied on preparation of nanoparticle delivery system using biodegradable polymer as a poly(DL-lactide-co-glycolide) (PLGA) and their binding characteristics with vaccine. Three kinds of PLGA nanoparticles were prepared by spontaneous emulsification solvent diffusion (SESD) method using sodium dodecyl sulfate and sodium laurate as an anionic surfactant and Lutrol F68 (polyethylene glycol-block-polypropylene glycol copolymer) as a nonionic surfactant. The 5-aminofluorescein labeled vaccine was coated on the surface of nanoparticles by ionic complex. The complexes between vaccine and nanoparticles were confirmed by change of the size. After vaccine coating on the surface of anionic nanoparticles, particle size was increased from 174 to 1,040 nm. However the size of nonionic nanoparticles was not more increased than size of anionic nanoparticles. The amount of coated vaccine on the surface of PLGA nanoparticles was $14.32\;{\mu}g/mg$ with sodium dodecyl sulfate, $12.41\;{\mu}g/mg$ with sodium laurate, and $9.47{\mu}g/mg$ with Lutrol F68, respectively. In conclusion, prepared nanoparticles in this study is possible to use as a virus-like nanoparticles and it could be accept in the field of influenza vaccine delivery system.

Characteristics of Bond Strength in Concrete Beams Reinforced with Galvanized Rebar (용융아연도금 철근콘크리트 보의 부착강도 특성)

  • Shin, Jae-Hyuk;Kim, Kyoung-Chul;Yang, In-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.4
    • /
    • pp.136-143
    • /
    • 2015
  • Galvanizing is one of the method used to solve the problem of corrosion of reinforcement in concrete structures. There few research reported in the literature regarding the effect of galvanized coating on the behavior of lap splices in concrete beams. The objective of this study was to determine whether galvanized rebar adversely affects lap splice behavior and bond strength. Concrete beams reinforced with black or galvanized rebar were tested in flexure. The test variables included the presence of galvanized rebar steel diameter, and lengths of lap splices. The study concentrated on comparing crack, failure pattern, and bond strength. The ultimate behavior of beams reinforced with galvanized rebar was not significantly different from that of black steel reinforced beams. Therefore, the test results indicated that the use of galvanizing-coated rebar had no adverse effect on behavior in lap splices of rebar compared to the use of black rebar.