• Title/Summary/Keyword: coating adhesion

Search Result 716, Processing Time 0.029 seconds

Characteristic Evaluation of TiMoN Coating Layer Deposited by Current Control available AIP-PVD Method (전류제어가 가능한 AIP-PVD법으로 증착된 TiMoN 코팅층 특성평가)

  • Shin, Hyun-Jung;Kim, Dong-Bea;Kim, Seong-Chul;Kim, Nam-Su
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.32 no.5
    • /
    • pp.224-229
    • /
    • 2019
  • PVD coating is a technology that can be applied to various industries, and is widely used for processing molds and machinery, improving performance of core parts, and extending the life. Therefore, there is a need for a research on a device and a process technology that can adjust the performance to suit each application. In this study, a PVD coating device with ion density control was used to deposit a coating layer on SKD 11, a cold die steel, with magnetron currents of 1 A, 2 A, 3 A at arc currents of 80 A, 100 A, 130 A. It examined the mechanical properties for each condition. Increasing the arc current and magnetron current could improve the thickness, adhesion, and hardness of the coating layer. Especially, When the magnetron current was high, it suppressed the droplets that could be generated by the high arc current, showing excellent surface uniformity and adhesion of the coating layer.

Application of ta-C Coating on WC Mold to Molded Glass Lens

  • Lee, Woo-Young;Choi, Ju-hyun
    • Tribology and Lubricants
    • /
    • v.35 no.2
    • /
    • pp.106-113
    • /
    • 2019
  • We investigated the application of tetrahedral amorphous carbon (ta-C) coatings to fabricate a glass lens manufactured using a glass molding process (GMP). In this work, ta-C coatings with different thickness (50, 100, 150 and 200 nm) were deposited on a tungsten carbide (WC-Co) mold using the X-bend filter of a filtered cathode vacuum arc. The effects of thickness on mechanical and tribological properties of the coating were studied. These ta-C coatings were characterized by atomic force microscopy, scanning electron microscopy, nano-indentation measurements, Raman spectrometry, Rockwell-C tests, scratch tests and ball on disc tribometer tests. The nano-indentation measurements showed that hardness increased with an increase in coating thickness. In addition, the G-peak position in the Raman spectra analysis was right shifted from 1520 to $1586cm^{-1}$, indicating that the $sp^3$ content increased with increasing thickness of ta-C coatings. The scratch test showed that, compared to other coatings, the 100-nm-thick ta-C coating displayed excellent adhesion strength without delamination. The friction test was carried out in a nitrogen environment using a ball-on-disk tribometer. The 100-nm-thick ta-C coating showed a low friction coefficient of 0.078. When this coating was applied to a GMP, the life time, i.e., shot counts, dramatically increased up to 2,500 counts, in comparison with Ir-Re coating.

The Effect of Aluminum Element on the Surface Properties of CrAlN Coating Film Deposited via Arc Ion Plating ( Arc Ion Plating으로 증착된 CrAlN 코팅막의 표면 특성에 미치는 Al 원소의 영향 )

  • Jae-Un Kim;Byeong-Seok Lim;Young-Shin Yun;Byung-Woo Ahn;Han-Cheol Choe
    • Journal of the Korean institute of surface engineering
    • /
    • v.57 no.1
    • /
    • pp.14-21
    • /
    • 2024
  • For this study, CrAlN multilayer coatings were deposited on SKD61 substrates using a multi-arc ion plating technique. The structural characteristics of the CrAlN multilayer coatings were evaluated using X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). Additionally, the adhesion of the coatings was assessed through scratch testing, and the mechanical strength was evaluated using nanoindentation and tribometric tests for frictional properties. The results show that the CrAlN multilayer coatings possess a uniform and dense structure with excellent mechanical strength. Hardness measurements indicated that the CrAlN coatings have high hardness values, and both the coating adhesion and wear resistance were found to be improved compared to CrN. The addition of aluminum is anticipated to contribute to enhanced durability and wear resistance.

Adhesion of Human Osteoblasts Cell on CrN Thin Film Deposited by Cathodic Arc Plasma Deposition

  • Pham, Vuong-Hung;Kim, Sun-Kyu
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.5
    • /
    • pp.203-207
    • /
    • 2009
  • Interaction between human osteoblast (hFOB 1.19) and CrN films was conducted in vitro. CrN films were produced by cathodic arc plasma deposition. The surface was characterized by atomic force microscopy (AFM). CrN films, glass substrates and TiN films were cultured with human osteoblasts for 48 and 72 hours. Actin stress fiber patterns and cell adhesion of osteoblasts were found less organized and weak on CrN films compared to those on the glass substrates and the TiN films. Human osteoblasts also showed less proliferation and less distributed microtubule on CrN films compared to those on glass substrates and TiN films. Focal contact adhesion was not observed in the cells cultured on CrN films, whereas focal contact adhesion was observed well in the cells cultured on glass substrates and TiN films. As a result, the CrN film is a potential candidate as a surface coating to be used for implantable devices which requires minimal cellular adhesion.

Properties and Curing Behaviors of UV Curable Adhesives with Different Coating Thickness in Temporary Bonding and Debonding Process (Temporary Bonding and Debonding 공정용 UV 경화형 접착 소재의 코팅 두께에 따른 물성 및 경화거동)

  • Lee, Seung-Woo;Lee, Tae-Hyung;Park, Ji-Won;Park, Cho-Hee;Kim, Hyun-Joong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.10
    • /
    • pp.873-879
    • /
    • 2014
  • UV curable adhesives with different acrylic functionalities were synthesized for temporary bonding and debonding process in 3D multi-chip packaging process. The aim is to study various factors which have an influence on UV curing. The properties and curing behaviors were investigated by gel fraction, peel strength, probe tack, and shear adhesion failure temperature. The results show that the properties and curing behaviors are dependent on not only acrylic functionalities of binders but also UV doses and coating thickness.

Adhesion improvement between metal and ceramic substrate by using ISG process (ISG법에 의한 금속과 세라믹기판과의 밀착력 향상)

  • 김동규;이홍로;추현식
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.6
    • /
    • pp.709-716
    • /
    • 1999
  • Ceramic is select for an alternative substrate material for high-speed circuits due to its low-thermal expansion. As, in this study, ceramic was prepared by ISG (interlayer sol-gel) process using metal salts and a metal alkoxide as the starting materials. Generally ceramic substrate is used electroless copper plating for the metallization. But it has been indicate weakely the adhesion strength between the substrate and copper layer. Therefore, this research, using the ISG process on the preparation of homogeneous and possible preparation at law temperature fabricated sol solution. Using of the dip coating method was coated for the purpose of giving the anchoring effect on the coating layer and enhancing the adhesion strength between the $Al_2$O$_3$ substrate and copper layer. This study examined primary the characteristic of the sol making condition and differential thermal analysis (DTA) X-ray diffraction (XRD) were mearsured to identify the crystal phase of heat treatment specimens. The morphology of the coated films were studied by scanning electron microscopy(SEM). As a resurt, XRD analysis was obtained patterns of $\alpha$-cordierite after heat-treatment about 2 hours at $1000^{\circ}C$. SEM analysis could have seen a large number of voids on coated film. The more contants of$ Al_2$$O_3$ Wt% was increased the more voids was advanced. Peel adhesion strength has a maximum in the contants of the TEOS:ANE of 1:0.7 mole%. In this case, adhesion strength has been measured 1150gf, peel adhesion strength were about 10 times more than uncoated of the ceramics film.

  • PDF

Effect of Plasma Polymerization Coating of CNTs on the Tensile Strength of Pei/Cnt Composites

  • Song, K.C.;Yoon, T.H.
    • Journal of Adhesion and Interface
    • /
    • v.6 no.4
    • /
    • pp.7-11
    • /
    • 2005
  • Multi-walled carbon nanotubes (CNTs), which were purified by etching in 25% $H_2SO_4/HNO_3$ solution at $60^{\circ}C$ for 2 h, were modified via plasma polymerization coating of acrylic acid, allylamine or acetylene, and then utilized to prepare PEI/CNT composites. First, plasma polymerization conditions were optimized by measuring the solvent resistance of coatings in THF, chloroform and NMP, and the tensile strength of PEI/CNT (0.5%) composites as a function of plasma power (20~50 W) and monomer pressure (20~50 mTorr). The tensile strength of PEI/CNT composites was further evaluated as a function of CNT loading (0.2, 0.5 and 1%). Finally, FT-IR was utilized to provide a better understanding of the improved tensile properties of PEI/CNT composites via plasma polymerization coating of CNTs. Plasma polymerization of acrylic acid greatly enhanced the tensile strength of PEI/CNT composites, as did allylamine but to a lesser degree, while acetylene plasma polymerization coating decreased tensile strength.

  • PDF

Collagen Formation and Adhesion of Human Gingival Fibroblasts on the IBAD Ca-P Coating on Ti

  • B. H. Zhao;F. Z. Cui;Lee, I-S.;W. Bai;H. L. Feng
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.S1
    • /
    • pp.10-14
    • /
    • 2003
  • Coatings of hydroxyapatite (HA) and tricalcium phosphate/HA (TCP/HA) on titanium were fabricated by ion beam assisted deposition (IBAD). Significant effect of the Ca-P coatings on human Gingival Fibroblasts (HGFs) attachment and formation of type I collagen were found by using immunofluorescence microscope. TCP/HA and HA coatings exerted more HGFs attachment and collagen I formation. Comparing with HA coating, TCP/HA coating exhibited better responses during the late period of the tests. This investigation indicated that this surface modification method may enhance the biological seal at the cervical level of the titanium dental implants.

A Study on Coating Adhesion of Hot Rolled Galvanized Iron Manufactured without pickling process (산세생략형 열연 용융아연도금강판의 특성)

  • 최진원;전선호
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.1
    • /
    • pp.21-30
    • /
    • 1999
  • Coating adherance behavior of low carbon steels, produced by POSCO, Korea, was studied in order to study the characteristics of hot rolled galvanized iron(HGI) manufactured without pickling line and the development of its process. Galvanizing experiments were carried out in zinc pot with 0.2wt% Al after hot rolled plates with scale were reduced at $550~750^{\circ}C$ in 10~30% hydrogen gas atmosphere during 60~400seconds. The reduced plates and coated products were examined by SST, XRD, SEM and EPMA on their surfaces and cross sections. Coating layer of HGI manufactured with pickling line was composed of retained scale, Fe-Zn-Al compound, Fe-Zn compound ($\delta_1\;and\;\zeta$ Phase) and pure zinc. It was superior to HGI in coating adhesion. It seems to be due to forming of Fe-Zn-Al compound in interface of matrix and retained porous scale.

  • PDF

Anti Corrosive Performance of Al and Zn Coatings Deposited by Plasma Arc Thermal Spray Process in Artificial Ocean Water (인공해양환경에서 플라즈마 아크 용사 공법이 적용된 Al 및 Zn 코팅의 부식 방지 성능 평가)

  • Adnin, Raihana Jannat;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.52-53
    • /
    • 2020
  • The thermal spray coating process is being used to protect the metals and alloys from wear, abrasion, fatigue, tribology, and corrosion failure. Therefore, in the present study, Al and Zn was deposited by plasma arc thermal spray process onto the steel substrate and their performance was assessed. The bond adhesion result shows that Al coating has higher value attributed to compact, dense, and less porous compared to Zn coating which contain defects/pores and uneven morphology assessed by scanning electron microscopy (SEM). Electrochemical results show that the Al coating exhibited higher impedance value compared to Zn in artificial ocean water solution at prolonged exposure periods. However, both coatings show the increment in polarization resistance with exposure periods which reveal that porosity of coatings is filled by the corrosion products.

  • PDF