• Title/Summary/Keyword: coating adhesion

Search Result 718, Processing Time 0.026 seconds

Micro/Nano Adhesion and Friction Characteristics of PTFE Coating Film Deposited by IBAD Method (IBAD 방법으로 코팅된 PTFE 박막의 마이크로/나노 응착 및 마찰 특성)

  • 윤의성;오현진;한흥구;공호성;장경영
    • Tribology and Lubricants
    • /
    • v.20 no.5
    • /
    • pp.237-244
    • /
    • 2004
  • Micro/nano tribological characteristics of PTFE coating films were experimentally studied. PTFE (polytetrafluoroethylene) modified polyethylene and low molecular weight PTFE were used as a coating materials. These films were deposited on Si-wafer (100) by IBAD (ion beam assisted deposition) method. The Ar ion beam sputtering was performed to change the surface topography of films using a hollow cathode ion gun under different Ar ion dose conditions in a vacuum chamber. Micro/nano tribological characteristics, water wetting angles and roughness were measured with a micro tribotester, SPM (scanning probe microscope), contact anglemeter and profilometer, respectively. The durability of the films were measured with macro tribotester. Results showed that the PTFE coating surfaces were converted to hydrophobic. The water contact angle of coated surfaces and surface roughness increased with the coating thickness. Adhesion and friction in micro and nano scale were governed by magnitude of normal load in soft material such as PTFE films. As the increase of sputtering time on low molecular weight PTFE films, the surface roughness was increased and nano adhesion and friction were decreased. The nano tribological characteristics of surfaces are mainly improved by chemical modification such as PTFE coating and given a synergy effect by the physical modification such as topographic modification.

Effect of Vacuum Heat Treatment on the Properties in Thermal Sprayed Ceramics Coating (세라믹스 용사 코팅 특성에 미치는 진공열처리의 영향)

  • Lee, J.I.;Ur, S.C.;Lee, Y.G.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.2
    • /
    • pp.98-102
    • /
    • 2000
  • The effect of vacuum heat treatment in the thermal sprayed ceramics coating on a capstan by either high velocity oxygen fuel(HVOF) or plasma thermal spray process was investigated. The coating materials applied on the capstan were tungsten and chrome carbides. In order to characterize the interface between coating layer and bare materials, hardness, adhesion strength, X-ray diffraction(XRD) and microstructural analysis are conducted. The adhesion strength of the carbide coated materials by HVOF process is over 500MPa compared to those of plasma coating process is 230MPa. In case of the carbide coated materials by HVOF process, the adhesion strength is increased to 15MPa and the porosity is reduced under 5% by vacuum heat treatment for 5 hrs at $1000^{\circ}C$. The XRD results reveal that the increasement is believed due to the phase stabilization of metastable $Cr_3C_2$ phase to stable $Cr_{23}C_6$ phase.

  • PDF

A Study on the Adhesion Strength and Residual Stress Measurement of Plasma Sprayed Cr$_3$C$_2$-NiCr Coating (크롬탄화물 용사피막의 접착력 및 잔류응력측정에 관한 연구)

  • ;;Kim, E. H.;Kwun, S. I.
    • Journal of Welding and Joining
    • /
    • v.14 no.4
    • /
    • pp.43-52
    • /
    • 1996
  • The plasma sprayed Cr$_{2}$C$_{2}$-NiCr coatings are widely used as wear-resistant and corrosion-resistant materials. The mechanical properties of the plasma sprayed Cr$_{2}$C$_{2}$-NiCr coatings were examined in this study. The distribution of the residual stress with the coating thickness was also examined by X-ray diffraction method. The pore in the coatings could be classified into two types ; one is the intrinsic pore originated from the spraying powder, the other is the extrinsic pore formed during spraying. During the tensile adhesion test, the fracture occurred at the interface of top coat and substrate or top coat and bond coat depending on the existence of bond coat. It was found that the compressive residual stress near the interface decreased with the increase of the top coat thickness. The tensile adhesion strength of the coating without bond coat was higher than that with bond coat, because the coating with bond coat has higher horizontal crack density near the interface between bond coat and top coat.

  • PDF

A study on the improvement of coating film characteristic in arc spraying by using the inert gas (아크용사시 불활성가스에 의한 피막밀착강도 향상에 관한 연구)

  • 김영식;여욱종
    • Journal of Welding and Joining
    • /
    • v.5 no.2
    • /
    • pp.17-26
    • /
    • 1987
  • In this study, the experiments were carried out for the purpose of establishment of the arc sparing method which reducing oxides or oxide film by using the inert gas as the carrier gas of atomizing particles. Main results obtained are as follows; 1. Oxides and oxide film which lower the adhesion strength are largely reduced by using the inert gas as the carrier gas of atomizing particles, and adhesion strength of coating film are improved. 2. The coating film characteristics appear to be no difference between the inert gas arc spraying in air environment and that in argon gas environment. 3. Inert gas arc spraying using argon as the carrie gas has higher reduction rate of composition element in coating film than compressed air spraying does.

  • PDF

Improvement of Coating Adherence of Hot-dip Galvanized Sheet Steels (용융아연 도금강판의 도금밀착성 개선)

  • 김종상;배대철
    • Journal of the Korean institute of surface engineering
    • /
    • v.24 no.1
    • /
    • pp.18-24
    • /
    • 1991
  • In the present work the adhesion failure of a hot-dip galvanized coating has been studied as a function gas composition temperature of strip and of atmospheric gas in furnace. The adhesion failure of the hot-dip galvani-zed coating is classified as three mechanisms : carbon deposition, oxide film formation and alloy layer formation. The adhesion failure due to oxide film formation decreased markedly by increasing the gases temperature of direct fired furnace(DFF) in order to improve the reducing ability of steel strip. Optimum conditions of operating and manufacturing facilities for improving the coating adherence are suggested by analyzing the interface between steel substrate and coating layer.

  • PDF

Effect of alumina coating on the Pull-in Voltage in Electrostatically actuated micro device (알루미나 코팅이 정전기적 구동의 마이크로 소자의 풀 인 전압에 미치는 영향)

  • Park, Hyun-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.9
    • /
    • pp.5758-5762
    • /
    • 2014
  • Electrostatically-actuated Micro device have been used widely in a variety of integrated sensors and actuators. Electrostatically-actuated micro devices with a gap of several micrometers or less between the electrodes have shown failure problems by electrostatic adhesion. To improve this adhesion phenomenon, micro devices of varying lengths and widths in electrodes were fabricated, and an alumina coating was then deposited using atomic layer deposition technology. The effects of improving adhesion phenomenon were compared by measuring the pull-in voltage before and after the coating process. The pull-in voltage increased with increasing length of the upper electrode after the coating. An increase in the electrode area results in an increase in the pull-in voltage after coating. The alumina coating method applied to improve the adhesion on an electrostatically-actuated micro device was observed as an effective method.

A Study on Water Contact Angle and Peel Strength by Anti- Adhesion Coating on Die Blade Materials for Adhesive Film Cutting (점착필름 절단용 다이 칼날 소재에 적용된 점착 방지 코팅의 물 접촉각 및 박리강도에 관한 연구)

  • Yujin Ha;Min-Wook Kim;Wook-Bae Kim
    • Tribology and Lubricants
    • /
    • v.39 no.5
    • /
    • pp.190-196
    • /
    • 2023
  • Anti-adhesion coatings are very important in the processing of adhesive materials such as optical clear adhesive (OCA) films. Choosing the appropriate release coating material for dies and tools can be quite challenging. Hydrophobic surface treatment is usually performed, and its performance is often estimated by the static water contact angle (CA). However, the relationship between the release performance and the CA is not well understood. In this study, the water CAs of surfaces coated with anti-adhesion materials and the peel strengths of the acrylic-based adhesive films are evaluated. STC5 and SUS304 are selected as the base materials. Base materials with different surface roughnesses are produced by hairline finishing, mirror-polishing, and end milling. Four fluoropolymer compounds, including a self-assembled monolayer, are selected to make the base surface hydrophobic. Static, advancing, and receding CAs are mostly increased due to the coating, but the CA hysteresis is found to increase or decrease depending on the coating material. The peel strengths all decreased after coating and are largely dependent on the coating material, with significantly lower values observed for fluorosilane and perfluoropolyether silane coatings. The peel strength is observed to correlate better with the static CA and advancing CA than with the receding CA or hysteresis. However, it is not possible to accurately predict the anti-adhesion performance based on water CA alone, as the peel strengths are not fully proportional to the CAs.

A study on affecting factors by using dolly in coating adhesion test (돌리를 이용한 도막 부착력 시험의 영향 인자에 관한 연구)

  • Baek, Yun-Ho;Son, Seong-Mo;Park, Chung-Seo
    • Corrosion Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.186-194
    • /
    • 2014
  • Establishment of adhesion strength measurement procedure for marine epoxy coatings was conducted in order to ensure reliability of the test results. It was found that (1) the increase in thickness of the substrates would induce increase of pull-off strength. Especially, the increase in adhesion strength with the substrate thickness increment was attributed to the transition of stress mode to the pure tensile mode excluding bending effect. (2) The longer curing time, the higher pull-off strength. It may be due to higher cross-linking density of the coating (3) The pull-off strength increases as coating thickness increases due to the diminishment of bending effect (4) The longer drying time after water immersion, the higher pull-off strength. It may be due to the evaporation of water molecule at the coating-substrate interface.