• Title/Summary/Keyword: coastal wave buoy

Search Result 44, Processing Time 0.021 seconds

Performance Evaluation of an Axisymmetric Floating Wave Power Device with an Oscillating Water Column in the Vertical Cylinder (진동 수주형 축대칭 부유식 파력발전장치의 성능평가)

  • Park, Woo-Sun;Jeong, Shin Taek;Choi, Hyukjin;Lee, Uk Jae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.1
    • /
    • pp.29-38
    • /
    • 2018
  • In order to evaluate the performance of the floating wave power, which is an axisymmetric oscillating water column type, linearized free surface boundary condition considering the influence of PTO (power takeoff) was derived and a finite element numerical model was established. Numerical experiments were carried out by varying cylinder length, skirt length, and depth of water, which are design parameters that can change the resonance of water column in cylinder and heave resonance of the float, which is considered to affect the power generation efficiency. Finally, the basic data necessary for the optimum design of the power generation system were obtained. As a result, the efficiency of the power generation system is dominated by the heave motion resonance of the float rather than the water column resonance in the cylinder, and the resonance condition for the heave motion can be changed efficiently by attaching the skirt to the outside of the buoy.

Physical Characteristics of Internal Waves and the Effect of Short Depression Internal Wave on Acoustic Transmission in the East Sea (동해 내부파의 물리적 특성과 단주기 오목형 내부파가 음파전달에 미치는 영향)

  • Han, Bong-Wan;Lim, Se-Han;Park, Kyeong-Ju;Kim, Seong-Il
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.37-43
    • /
    • 2009
  • Fluctuations in the ocean are closely related with the underwater acoustic propagation. Internal waves are generated by fluctuation of isopycnal layer in the upper part of the stratified ocean, which are propagated from offshore to coastal area. Physical characteristics of the internal waves existed in the East Sea were derived from the five field experimental data and the ocean monitoring buoy nearshore the mid-east coast of Korea. The dominant periods are appeared in the near-inertial period about $17{\sim}20hours$ and the short period about a few minutes. The wavelengths of them are $10{\sim}50km$ and $300{\sim}1000m$, and the phase speeds are $20{\sim}100cm/s$ and $30{\sim}70cm/s$, respectively The maximum amplitudes are about $20{\sim}25m$. Under the environment of short depression internal wave propagation, the variations of transmission loss field were investigated using an range-dependent acoustic transmission loss model(RAM). The result shows that the large irregular variations of transmission loss caused by progressing the internal wave from offshore toward coast.

Development and Evaluation of an Ensemble Forecasting System for the Regional Ocean Wave of Korea (앙상블 지역 파랑예측시스템 구축 및 검증)

  • Park, JongSook;Kang, KiRyong;Kang, Hyun-Suk
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.2
    • /
    • pp.84-94
    • /
    • 2018
  • In order to overcome the limitation of deterministic forecast, an ensemble forecasting system for regional ocean wave is developed. This system predicts ocean wind waves based on the meteorological forcing from the Ensemble Prediction System for Global of the Korea Meteorological Administration, which is consisted of 24 ensemble members. The ensemble wave forecasting system is evaluated by using the moored buoy data around Korea. The root mean squared error (RMSE) of ensemble mean showed the better performance than the deterministic forecast system after 2 days, especially RMSE of ensemble mean is improved by 15% compared with the deterministic forecast for 3-day lead time. It means that the ensemble method could reduce the uncertainty of the deterministic prediction system. The Relative Operating Characteristic as an evaluation scheme of probability prediction was bigger than 0.9 showing high predictability, meaning that the ensemble wave forecast could be usefully applied.

Estimation of Significant Wave Heights from X-Band Radar Using Artificial Neural Network (인공신경망을 이용한 X-Band 레이다 유의파고 추정)

  • Park, Jaeseong;Ahn, Kyungmo;Oh, Chanyeong;Chang, Yeon S.
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.6
    • /
    • pp.561-568
    • /
    • 2020
  • Wave measurements using X-band radar have many advantages compared to other wave gauges including wave-rider buoy, P-u-v gauge and Acoustic Doppler Current Profiler (ADCP), etc.. For example, radar system has no risk of loss/damage in bad weather conditions, low maintenance cost, and provides spatial distribution of waves from deep to shallow water. This paper presents new methods for estimating significant wave heights of X-band marine radar images using Artificial Neural Network (ANN). We compared the time series of estimated significant wave heights (Hs) using various estimation methods, such as signal-to-noise ratio (${\sqrt{SNR}}$), both and ${\sqrt{SNR}}$ the peak period (TP), and ANN with 3 parameters (${\sqrt{SNR}}$, TP, and Rval > k). The estimated significant wave heights of the X-band images were compared with wave measurement using ADCP(AWC: Acoustic Wave and Current Profiler) at Hujeong Beach, Uljin, Korea. Estimation of Hs using ANN with 3 parameters (${\sqrt{SNR}}$, TP, and Rval > k) yields best result.

Assessment of Wave Change considering the Impact of Climate Change (기후변화 영향을 고려한 파랑 변화 평가)

  • Chang Kyum Kim;Ho Jin Lee;Sung Duk Kim;Byung Cheol Oh;Ji Eun Choi
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.4
    • /
    • pp.19-31
    • /
    • 2023
  • According to the climate change scenarios, the intensity of typhoons, a major factor in Korea's natural disaster, is expected to increase. The increase in typhoon intensity leads to a rise in wave heights, which is likely to cause large-scale disasters in coastal regions with high populations and building density for dwelling, industry, and tourism. This study, therefore, analyzed observation data of the Donghae ocean data buoy and conducted a numerical model simulation for wave estimations for the typhoon MAYSAK (202009) period, which showed the maximum significant wave height. The boundary conditions for wave simulations were a JMA-MSM wind field and a wind field applying the typhoon central pressure reduction rate in the SSP5-8.5 climate change scenario. As a result of the wave simulations, the wave height in front of the breakwater at Sokcho port was increased by 15.27% from 4.06 m to 4.68 m in the SSP5-8.5 scenario. Furthermore, the return period at the location of 147-2 grid point of deep-sea design wave was calculated to increase at least twice, it is necessary to improve the deep-sea design wave of return period of 50-year, which is prescriptively applied when designing coastal structures.

Characteristics of the Monthly Mean Sea Surface Winds and Wind Waves near the Korean Marginal Seas in the 2002 Year Computed Using MM5/KMA and WAVEWATHC-III model (중규모 기상모델(MM5/KMA)과 3세대 파랑모델(WAVEWATCH-III)로 계산된 한반도 주변해역의 2002년 월평균 해상풍과 파랑 분포 특성)

  • 서장원;장유순
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.3
    • /
    • pp.262-273
    • /
    • 2003
  • We have analyzed the characteristics of the monthly mean sea surface winds and wind waves near the Korean marginal seas in the 2002 year on the basis of prediction results of the sea surface winds from MM5/KMA model, which is being used for the operation system at the Korea Meteorological Administration and the third generation wave model, WAVEWATCH-III. which takes the sea surface winds derived from MM5/KMA model as the initial data. Statistical comparisons have been applied with both the marine meteorological observation buoy and the TOPEX/POSEIDON satellite wave heights data to verify the model results. The correlation coefficients between the models and observation data reach up to about 60-80%, supporting that these models satisfactorily simulate the sea surface winds and wave heights even at the coastal regions except for Chilbal-Do located very close to the land. Based on these verification results, the distributions of monthly mean sea surface winds, significant wave heights, wave lengths and wave periods around the Korean marginal seas during 2002 year have been represented.

Seasonal Characteristics of Sea Surface Winds and Significant Wave Heights Observed Marine Meterological Buoys and Lighthouse AWSs near the Korean Peninsula (한반도 주변해역의 기상부이와 등표에서 관측된 계절별 해상풍과 유의파고 특성)

  • Kang, Yoon-Hee;Seuk, Hyun-Bae;Bang, Jin-Hee;Kim, Yoo-Keun
    • Journal of Environmental Science International
    • /
    • v.24 no.3
    • /
    • pp.291-302
    • /
    • 2015
  • The seasonal variations of sea surface winds and significant wave heights were investigated using the data observed from the marine meteorological buoys (nine stations) and Automatic Weather Stations (AWSs) in lighthouse (nine stations) around the Korean Peninsula during 2010~2012. In summer, the prevailing sea surface winds over the East/West Sea and the South Sea were northerly/southerly and easterly/westerly winds due to both of southeast monsoon and the shape of Korean Peninsula. On the other hand, the strong northerly winds has been observed at most stations near Korean marginal seas under northwest monsoon in winter. However, the sea surface winds at some stations (e.g. Galmaeyeo, Haesuseo in the West Sea) have different characteristics due to topographic effects such as island or coastal line. The significant wave heights are the highest in winter and the lowest in summer at most stations. In case of some lighthouse AWSs surrounded by islands (e.g. Haesuseo, Seosudo) or close to coast (e.g. Gangan, Jigwido), very low significant wave heights (below 0.5 m) with low correlations between sea surface wind speeds and significant wave heights were observed.

Development and Verification of a Rapid Refresh Wave Forecasting System (초단기 파랑예측시스템 구축 및 예측성능 검증)

  • Roh, Min;La, NaRy;Oh, SangMyeong;Kang, KiRyong;Chang, PilHun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.5
    • /
    • pp.340-350
    • /
    • 2020
  • A rapid refresh wave forecasting system has been developed using the sea wind on the Korea Local Analysis and Prediction System. We carried out a numerical experiment for wind-wave interaction as an important parameter in determining the forecasting performance. The simulation results based on the seasons of with typhoon and without typhoon has been compared with the observation of the ocean data buoy to verify the forecasting performance. In case of without typhoon, there was an underestimate of overall forecasting tendency, and it confirmed that an increase in the wind-wave interaction parameter leads to a decrease in the underestimate tendency and root mean square error (RMSE). As a result of typhoon season by applying the experiment condition with minimum RMSE on without typhoon, the forecasting error has increased in comparison with the result without typhoon season. It means that the wave model has considered the influence of the wind forcing on a relatively weak period on without typhoon, therefore, it might be that the wave model has not sufficiently reflected the nonlinear effect and the wave energy dissipation due to the strong wind forcing.

THE POTENTIAL OF SATELLITE REMOTE SENSING ON REDUCTION OF TSUNAMI DISASTER

  • Siripong, Absornsuda
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.52-55
    • /
    • 2006
  • It's used to be said that tsunami is a rare event. The recurrence time of tsunami in Sumatra area is approximately 230 years as CalTech Research Group‘s study from paleocoral. However, the tsunami occurred in Indian Ocean on 26 December 2004, 28 March 2005 and 17 July 2006, because the earthquakes still release the energy. To cope with the tsunami disaster, we have to put the much effort on better disaster preparedness. The Tsunami Reduction Of Impacts through three Key Actions (TROIKA) was suggested by Eddie N. Bernard, the director of NOAA/PMEL (Pacific Marine Environmental Laboratory). They are Hazard Assessment, Mitigation and Warning Guidance. The satellite remote sensing has potential on these actions. The medium and high resolution satellite data were used to assess the degree of damage at the six-damaged provinces on the Andaman seacoast of Thailand. Fast and reliable interpretation of the damage by remote sensing method can be used for inundation mapping, rehabilitation and housing plans for the victims. For tsunami mitigation, the satellite data can be used with GIS to construct the evacuation map (evacuation route and refuge site) and coastal zone management. It is also helpful for educational program for local residents and school systems. Tsunami is a kind of ocean wave, therefore any satellite sensors such as SAR, Altimeter, MODIS, Landsat, SPOT, IKONOS can detect the tsunami wave in 2004. The satellite images have shown the characteristics of tsunami wave approaching the coast. For warning, satellite data has potential for early warning to detect the tsunami wave in deep ocean, if there are enough satellite constellation to monitor and detect the first tsunami wave like the pressure gauge, seismograph and tide gauge with the DART buoy can do. Moreover, the new methods should be developed to analyse the satellite data more faster for early warning procedure.

  • PDF

Development of the Global Tsunami Prediction System using the Finite Fault Model and the Cyclic Boundary Condition (유한 단층 모델 및 순환 경계조건을 이용한 전지구 지진해일 예측 시스템 개발)

  • Lee, Jun-Whan;Park, Eun Hee;Park, Sun-Cheon;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.6
    • /
    • pp.391-405
    • /
    • 2015
  • A global tsunami prediction system was suggested for a distant tsunami using a finite fault model and a cyclic boundary condition. The possibility of the suggested system as a distant tsunami response system was checked by applying it into the case of 2014 Chile tsunami. A comparison between the numerical results(tsunami height and arrival time) with different conditions (boundary condition, governing equation, grid size and fault model) and measured data (DART buoy, tide station) showed the importance of the finite fault model and the cyclic boundary condition.