• Title/Summary/Keyword: coastal plant

Search Result 459, Processing Time 0.03 seconds

Benthic dinoflagellates in Korean waters

  • Lim, An Suk;Jeong, Hae Jin
    • ALGAE
    • /
    • v.36 no.2
    • /
    • pp.91-109
    • /
    • 2021
  • The occurrence of benthic dinoflagellates, many of which are known to be toxic, is a critical concern for scientists, government officers, and people in the aquaculture, dining, and tourism industries. The interest in these dinoflagellates in countries with temperate climate is increasing because tropical or subtropical species introduced into temperate waters by currents are able to survive the winter season in the new environment owing to global warming. Recently, several species from the benthic dinoflagellate genera Amphidinium, Coolia, Ostreopsis, Gambierdiscus, and Prorocentrum have been reported in the waters of the South and East Sea of Korea. The advent of the benthic dinoflagellates in Korean waters is especially important because raw or slightly cooked seaweeds, which may harbor these benthic dinoflagellates, as well as raw fish, which can be potentially intoxicated by phytotoxins produced by some of these benthic dinoflagellates, are part of the daily Korean diet. The recent increase in temperature of Korean coastal waters has allowed for the expansion of benthic dinoflagellate species into these regions. In the present study, we reviewed the species, distribution, and toxicity of the benthic dinoflagellates that have been reported in Korean waters. We also provided an insight into the ecological and socio-economic importance of the occurrence of benthic dinoflagellates in Korean waters.

A study on Shape of Ocean Wave Spectrum (해양파도 스펙트럼의 형상에 관한 분석)

  • Kim, Jeong-Seok;Shin, Seung-Ho
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.05a
    • /
    • pp.51-52
    • /
    • 2019
  • In the past, waves, which are the main external forces acting on marine and coastal structures, have been dealt with only in terms of safety. Recently, various studies have been conducted to define the characteristics of waves in a specific area in order to respond to the increasing demand for diversified marine activities such as ocean energy development and marine leisure sports. Although the characteristics of waves are specific to the site, the available spectrum model proposed in previous studies are limited. In this study, we analyzed the shape of the ocean wave spectrum by comparing it with the standard spectrum model.

  • PDF

Numerical Simulation of the Water Temperature in the Al-Zour Area of Kuwait

  • Lee, Myung Eun;Kim, Gunwoo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.3
    • /
    • pp.334-343
    • /
    • 2019
  • The Al-Zour coastal area, located in southern Kuwait, is a region of concentrated industrial water use, seawater intake, and the outfall of existing power plants. The Al-Zour LNG import facility project is ongoing and there are two issues regarding the seawater temperature in this area that must be considered: variations in water temperature under local meteorology and an increase in water temperature due to the expansion of the thermal discharge of expanded power plant. MIKE 3 model was applied to simulate the water temperature from June to July, based on re-analysis data from the European Centre for Medium-Range Weather Forecasts (ECMWF) and the thermal discharge input from adjacent power plants. The annual water temperatures of two candidate locations of the seawater intake for the Al-Zour LNG re-gasification facility were measured in 2017 and compared to the numerical results. It was determined that the daily seawater temperature is mainly affected by thermal plume dispersion oscillating with the phase of the tidal currents. The regional meteorological conditions such as air temperature and tidal currents, also contributed a great deal to the prediction of seawater temperature.

A Study on Characteristics of Self-weight Consolidation of Bottom Ash Mixed Soil (Bottom Ash 혼합토의 자중압밀 특성 연구)

  • Yoon, Won-Sub;Shin, Seung-Gu;Chae, Young-Su
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.4
    • /
    • pp.59-77
    • /
    • 2015
  • In order to meet the new requirements for landfill materials, this study planned a study to apply mixed soil of mixing bottom ash and coastal dredged soil to the dredged ground. Coal ash generated from thermal power plant is divided into fly ash and bottom ash. In the case of fly ash, many studies have been conducted because small particles causes permeability coefficient to be small during recycling so no problem has been raised in the environmental area but the utilization of bottom ash has been limited because environmental problems have been raised during recycling due to its larger particle size and greater permeability coefficient. According to recently published studies, however, the results of the study that conducted the water analysis of leachate generated in the ground improvement section using bottom ash showed that heavy metal contamination levels were found to be within the reference value and no significant environmental problems were found so utilization of bottom ash is evaluated to increase significantly in the future. This bottom ash has the particle size of sand and only transportation costs need to be considered when providing materials because the majority has been disposed and it is judged as the most suitable material in dredging landfill in the economic aspect because most thermal power plants are located in the coast and transportation costs can be reduced by ship. Also, research on mixed soil that can maximize the effect of the construction period and construction cost savings than dredged soil is determined as needed because the demand for coastal dredging reclamation is increasing such as Saemangeum project etc. Therefore, we studied self-weight consolidation characteristics depending on sample processing and mixing method of mixed soil by carrying out interior self-weight consolidation experiments on mixed soil of mixing bottom ash and Kaolinite according to the new development needs of recent coastal reclaimed ground and these result findings are expected to be used as basic data when applying the large coastal dredged ground in the future.

Numerical Simulation on Seabed-Structure Dynamic Responses due to the Interaction between Waves, Seabed and Coastal Structure (파랑-지반-해안구조물의 상호작용에 기인하는 해저지반과 구조물의 동적응답에 관한 수치시뮬레이션)

  • Lee, Kwang-Ho;Baek, Dong-Jin;Kim, Do-Sam;Kim, Tae-Hyung;Bae, Ki-Seong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.1
    • /
    • pp.49-64
    • /
    • 2014
  • Seabed beneath and near the coastal structures may undergo large excess pore water pressure composed of oscillatory and residual components in the case of long durations of high wave loading. This excess pore water pressure may reduce effective stress and, consequently, the seabed may liquefy. If the liquefaction occurs in the seabed, the structure may sink, overturn, and eventually fail. Especially, the seabed liquefaction behavior beneath a gravity-based structure under wave loading should be evaluated and considered for design purpose. In this study, to evaluate the liquefaction potential on the seabed, numerical analysis was conducted using 2-dimensional numerical wave tank. The 2-dimensional numerical wave tank was expanded to account for irregular wave fields, and to calculate the dynamic wave pressure and water particle velocity acting on the seabed and the surface boundary of the structure. The simulation results of the wave pressure and the shear stress induced by water particle velocity were used as inputs to a FLIP(Finite element analysis LIquefaction Program). Then, the FLIP evaluated the time and spatial variations in excess pore water pressure, effective stress and liquefaction potential in the seabed. Additionally, the deformation of the seabed and the displacement of the structure as a function of time were quantitatively evaluated. From the analysis, when the shear stress was considered, the liquefaction at the seabed in front of the structure was identified. Since the liquefied seabed particles have no resistance force, scour can possibly occur on the seabed. Therefore, the strength decrease of the seabed at the front of the structure due to high wave loading for the longer period of time such as a storm can increase the structural motion and consequently influence the stability of the structure.

Effects of Sowing Time on Dry Root Yield and Agronomic Traits of Scutellaria baicalensis Georg Cultivated After Barley (맥후작(麥後作) 직파시기(直播時期)가 황금(黃芩)의 주요형질(主要形質) 및 수량(收量)에 미치는 영향(影響))

  • Kwon, Byung-Sun;Park, Gyu-Chul
    • Korean Journal of Medicinal Crop Science
    • /
    • v.5 no.3
    • /
    • pp.202-205
    • /
    • 1997
  • This study was carried out to determine the effect of sowing time on the flowering, growth and yield of Scutellaria baicalensis Georg, which was collected from Yeochon district, cultivated after barley in the southern coastal areas of Korea. Emergence and flowering dates in the sowing time of June 1 were earlier than those of the other sowing times. In the sowing time of June 1, length and diameter of main stem, number of node per main stem, number of branch per plant and dry weight of stem leaves were greater than those of sowing times of June 10 and June 20. Yield components such as main stem length and diameter, main stem numbers, branches per plant, dry weight of stem leaves, main root length and thickness, number of large root and fine root per plant, and dry weight of root were the highest at the sowing time of June I as the yield of 71.3kg/10a. Optimum sowing time of Scutellaria baicalensis Georg cultivated after barley was June 1 in southern areas of korea.

  • PDF

A Study on Environmental Impact Assessment Guidelines for Marine Environments in Construction Projects of Thermal Power Plant (화력발전소 건설사업의 해양환경 환경영향평가 가이드라인(안) 연구)

  • Maeng, Junho;Kim, Eunyoung;Kang, Taesoon;Son, Minho
    • Journal of Environmental Impact Assessment
    • /
    • v.26 no.1
    • /
    • pp.78-92
    • /
    • 2017
  • Environmental impact assessment(EIA) on the construction and operation of thermal power plant(TPP) is aimed at promoting sustainable coastal development by clearly identifying the marine physics and organisms effects of the project on the surrounding marine environment and minimizing its impact. The primary purpose of this study is to establish EIA guidelines for TPP in order to assess how TPP construction projects influence marine environment and to establish the mitigaion plans of environmental impacts. Through this study, scientific and efficient EIA guidelines for the marine environments were established by a specialist forum consisted of officials from the Ministry of Environment and the Ministry of Trade, Industry and Energy, personnel from five public corporations in charge of TPPs and marine environment experts. In the study, fifteen EIA reports (2009~2015) on TPPs submitted were analyzed to identify the shortcomings of current assessment items on marine environment and to collect a wide range of information including EIA report formulation regulations, domestic and overseas environmental survey guidelines and EIA review comments on TPPs. Based on the findings, a specialist forum put together EIA guidelines for TPP construction projects.

Vascular Plants in Jinhae-si of Southern Coastal Area (남해안 진해시에 분포하는 관속식물상)

  • You, Ju-Han;Jung, Sung-Gwan;Kim, Kyung-Tae;Choi, Won-Young;Park, Jong-Wan;Kwon, Do-Gyun;Lee, Woo-Sung;Kim, Ji-Sung;Park, Kyung-Hun
    • Korean Journal of Plant Resources
    • /
    • v.20 no.2
    • /
    • pp.155-167
    • /
    • 2007
  • This study was carried out to offer the raw data for environment conservation by surveying and analysing the flora distributed over Jinhae-si, and to present the frame for preparing the method of obtaining the bioresource in approach to plant resource. The period of survey was from May, 2005 to June, 2006, and the routes were A(Mt. Jangbok), B(Ahnmin hill) C(Mt. Hwa). The results as follows. The vascular plants were summarized as 447 taxa; 98 families, 286 genera, 394 species, 49 varieties, and 4 forma. The rare plants designated by Korea Forest Service were 2 taxa; Tricyrtis dilatata and Viola albida. The Korean endemic plants were 11 taxa; Tricyrtis dilatata, Salix caprea, Carpinus coreana, Melandryum seoulense, Clematis trichotoma, Thalictrum uchiyamai, Deutzia coreana, Spiraea prunifolia for. simpliciflora, Lespedeza maritima, Forsythia koreana and Weigela subsessilis.

Salt tolerant rice cv Nona Bokra chromosome segments introgressed into cv Koshihikari improved its yield under salinity through retained grain filling

  • Mitsuya, Shiro;Murakami, Norifumi;Sato, Tadashi;Kano-Nakata, Mana;Yamauchi, Akira
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.238-238
    • /
    • 2017
  • Salt stress is one of the deteriorating abiotic stresses due to the climate change, which causes over-accumulation of $Na^+$ and $Cl^-$ ions in plants and inhibits the growth and yield of rice especially in coastal Southeastern Asia. The yield components of rice plant (panicle number, spikelet number per panicle, 1000-grain weight, % of ripened grains) that are majorly affected by salt stress vary with growth stages at which the plant is subjected to the stress. In addition, the salt sensitivity of each yield component differs among rice varieties even when the salt-affected growth stage was same, which indicates that the physiological mechanism to maintain each yield component is different from each other. Therefore, we hypothesized that rice plant has different genes/QTLs that contribute to the maintenance of each yield component. Using a Japanese leading rice cultivar, Koshihikari, and salt-tolerant Nona bokra's chromosome segment substitution lines (CSSLs) with the genetic background of Koshihikari (44 lines in total) (Takai et al. 2007), we screened higher yielding CSSLs under salinity in comparison to Koshihikari and identified the yield components that were improved by the introgression of chromosome segment(s) of Nona bokra. The experiment was conducted in a salinized paddy field. One-month-old seedlings were transplanted into a paddy field without salinity. These were allowed to establish for one month, and then the field was salinized by introducing saline water to maintain the surface water at 0.4% salinity until harvest. The experiments were done twice in 2015 and 2016. Although all the CSSLs and Koshihikari decreased their yield under salinity, some CSSLs showed relatively higher yield compared with Koshihikari. In Koshihikari, all the yield components except panicle number were decreased by salinity and % of ripened grains was mostly reduced, followed by spikelet number per panicle and 1000-grain weight. When compared with Koshihikari, keeping a higher % of ripened grains under salinity attributed to the significantly greater yield in one CSSL. This indicated that the % of ripened grains is the most sensitive to salt stress among the yield components of Koshihikari and that the Nona bokra chromosome segments that maintained it contributed to increased yield under salt stress. In addition, growth analyses showed that maintaining relative growth rate in the late grain filling stage led to the increased yield under salt stress but not in earlier stages.

  • PDF

Hydraulic Experiment for Pollutant Discharge Characteristics in a Wolseong Nuclear Power Plant Port (월성원자력발전소의 항내 오염물 유출 특성에 관한 수리실험)

  • Yang, Byung-Mo;Min, Byung-Il;Park, Kihyun;Kim, Sora;Lee, Jung Lyul;Suh, Kyung-Suk
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.2
    • /
    • pp.113-122
    • /
    • 2016
  • In this study, the dispersion process of pollutant substances in a port under wave and current environments was evaluated by a hydraulic experiment. Once the contaminants washed ashore into the port of Wolseong nuclear power plant, transport processes of pollutants were investigated by tracking the tracer according to the variations of experimental condition through a hydraulic experiment. Several hydraulic experiments were performed to analyze the pollutant discharge rate of the surface coming from the different coastal environments. From the hydraulic experiment results, the tracer concentration decreased exponentially. These results suggested that, after the tracer was transported to the open sea, a different gradient was shown under different conditions. For the case of a diluted condition, the half-life of flow rate was 2.70, 10.40, and 26.39 days for 30, 20 and 10 rpm in the left-side, respectively. The decrease of the tracer concentration under conditions of 30 rpm was much faster than that under conditions of 10 rpm. For the wave condition, the half-life of flow rate was 4.59 and 15.35 days for the right and left side of the port in a hydraulic scale prototype, respectively.