• Title/Summary/Keyword: coastal diatoms

Search Result 106, Processing Time 0.026 seconds

A study on the fine structure of marine diatoms in Korean coastal waters: Genus Thalassiosira 5

  • Park, Joon-Sang;Lee, Jin-Hwan
    • ALGAE
    • /
    • v.25 no.3
    • /
    • pp.121-131
    • /
    • 2010
  • Thalassiosira species were collected from October 2007 to January 2009 in an attempt to better understand species diversity of the genus Thalassiosira in Korean coastal waters. A total of 5 Thalassiosira species (T. concaviuscula, T. oceanica, T. partheneia, T. simonsenii and T. nanolineata) were identified here. Most species in this study were of small size, and 5 species were recorded for the first time in Korean coastal waters. Using a scanning electron microscope (SEM), we described distinctive characteristics of fine structure that proved to be important diagnostic characteristics for the identification of each species. The most important diagnostic characteristics for Thalassiosira species identification were the marginal strutted processes, the position of labiate processes, and the areolation. The differential characteristics of the species studied were: T. concaviuscula has a double layered external tubes on the marginal strutted processes; T. oceanica shows marginal ridges that are interlinked between the marginal strutted processes; the valve face of T. partheneia is fairly convex and its labiate process is positioned midway between two strutted processes; T. simonsenii is characterized by two labiate processes and somewhat coarse areolae; and, T. nanolineata has several central strutted processes and linear areolation.

Dynamics of the Phytoplankton Community in the Coastal Waters of Chuksan Harbor, East Sea (동해 축산항 연안의 식물플랑크톤 군집 동태)

  • Kang, Yeon-Shik;Choi, Hyu-Chang;Lim, Joo-Hwan;Jeon, In-Seong;Seo, Ji-Ho
    • ALGAE
    • /
    • v.20 no.4
    • /
    • pp.345-352
    • /
    • 2005
  • In order to investigate the distribution of phytoplankton community in the coastal waters of the Chuksan Harbor, East Sea, the abundance and biomass of phytoplankton have been evaluated through seasonal interval sampling from April 2000 to October 2002. A total of 363 different phytoplankton species was observed and most of them were composed of diatoms. The mean abundance and chlorophyll-a concentration of phytoplankton during the study period ranged from 56 ${\times}$ $10^3$ to 720 ${\times}$ $10^3$ cells $L^{-1}$ and from 0.78 to 3.29 μg chl-a $L^{-1}$, respectively. The relative contribution of the size-fractionated phytoplankton to phytoplankton community showed difference according to seasons. The average contribution of nano-phytoplankton(<20 $\mu$m) was over 50% in the total abundance and biomass of the phytoplankton. Our results show that nano-phytoplankton play an important role in the southern coastal waters of the East Sea. And the environmental factors such as suspended substances, phosphates and silicates were positively correlated with the abundances and biomass of phytoplankton.

A Characteristics of Thermohaline Structure and Phytoplankton Community from Southwestern Parts of the East China Sea during Early Summer, 2004 (이른 여름 동중국해 남서해역의 해양환경과 식물플랑크톤 군집의 분포특성)

  • Yoon, Yang-Ho;Park, Jong-Sick;Park, Yeong-Gyun;Soh, Ho-Young;Hwang, Doo-Jin
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.41 no.2
    • /
    • pp.129-139
    • /
    • 2005
  • We investigated the characteristics of the thermohaline structure and phytoplankton community from the southwestern areas of Jeju to the nothern areas of Taiwan in the Ease China Sea, in June 2004. According to the analysis of a T-S diagram, three characteristic of water masses were identified. We classified them into the mixed water mass by the Chiness continental coastal waters and Yellow Sea cold water (Region A), Chinese continental coastal waters (Region B) and Taiwan warm current (Region C). Region A was characterized by low temperature, low salinity, high density and high Chl-a concentration. Region B was characterized by high temperature, low salinity, low density and high Chl-a and Region C was characterized high temperature, high salinity, low density and low Chl-a concentration. The phytoplankton community identified a total of 56 species belonging to 31 genera. The dominant species was mainly dinoflagellates, Gymnodinium breve, Scrippsiella trochoidea, Ceratium fusus, Prororcentrum triestinum, centric diatoms, Chaetoceros lorenzianus, Leptocylindrus danicus, Proboscia alata, Skeletonema costatum and pennate diatoms, Pseudonitzschia pungens, Cylidrotheca closterium. Standing crops of phytoplakton fluctuated between $0.1{\times}10^2$ cells/L and $5.7{\times}10^4$ cells/L by dominance of dinoflagellates. In the phytoplankton community, the Region A was characterized by the various species composition in 39 species, the dominint species with di-atomes, Pn. pungen, Ch. lorenzianus and standing crops from 6.9 cells/$m\ell$ to 56.6 cells/$m\ell$, Region B by the various species composition in 37 species, the dominant species with dinoflagellates, G.breve, S. trochoidea and standing crops from 4.6 cells/$m\ell$ to 26.7 cells/$m\ell$, and the Region C by low species number with 28 species, the dominant species with one dinoflagellate, S.trochoidea and one diatom, L.danicus and very low standing crops from 0.1 cells/$m\ell$ to 5.7 cells/$m\ell$. Phytoplankton productivity in the East China Sea was controlled by Chinese continental coastal waters which include a high concentrations of nutrients.

The Effect of Environmental Factors on the Advent of Chattonella (Raphidophyceae) in Yeosu Coastal Waters, Korea, and the Effect of Nutrients on the Growth of Chattonella (여수 연안해역에서 침편모조류 Chattonella속 출현환경 및 영양염에 대한 성장특성)

  • Noh, Il-Hyeon;Oh, Seok-Jin;Shin, Hyeon-Ho;Kang, In-Seok;Yoon, Yang-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.43 no.4
    • /
    • pp.362-372
    • /
    • 2010
  • In order to understand what leads to the appearance of harmful Chattonella algae in the Yeosu coastal waters of Korea, we measured environmental parameters every week at one station from May to November, 2006, and April to October, 2007. Four species of Chattonella appeared during the monitoring period: C. antiqua, C. globosa, C. marina and C. ovata. The range of water temperature and salinity were $15.0-27.9^{\circ}C$ and 17.6~33.0 psu, respectively, when Chattonella appeared, and their maximum cell density (4,840 cells/L) was at $27.1^{\circ}C$ and 33.0 psu. During the monitoring periods, the range of dissolved inorganic nitrogen (DIN), phosphate (DIP) and chlorophyll $\alpha$ (Chl-$\alpha$) concentrations in surface waters were $1.20-52.23\;{\mu}M$ ($8.59{\pm}8.97\;{\mu}M$), $0.03-1.56\;{\mu}M$ ($0.47{\pm}0.31\;{\mu}M$) and $0.45-31.12\;{\mu}g/L$ ($3.58{\pm}4.77\;{\mu}g/L$), respectively. Chattonella occurred at low cell density when the Chl-$\alpha$ concentration increased because of supplied nutrients, whereas their cell density increased during the periods of rapid decrease in Chl-$\alpha$. The results of growth experiments based on batch culture showed that the half saturation constant ($K_s$) of C. antiqua on ammonium (${NH_4}^-$), nitrate (${NO_3}^-$) and phosphate (${PO_4}^{2-}$) were $3.89{\mu}M$, $5.01\;{\mu}M$ and $0.63\;{\mu}M$, respectively. These Ks values are higher than those reported for diatoms and other flagellates at the DIP concentration (average $0.47{\mu}M$) of Yeosu coastal waters. Although the maximum specific growth rate (${\mu}_{max}$) of C. antiqua was lower than diatoms, it was higher than those of other flagellates. Therefore, our results indicate that the DIP level in the study area was too low to support Chattonella blooms, although Chattonella species have physiological characteristics that enable them to grow more rapidly than other flagellates when nutrient levels are higher than their $K_s$.

Potentially toxic Pseudo-nitzschia species in Tongyeong coastal waters, Korea (통영 연안의 잠재독성 Pseudo-nitzschia 출현종)

  • Park, Jong-Gyu;Kim, Eung-Kwon;Lim, Weol-Ae
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.14 no.3
    • /
    • pp.163-170
    • /
    • 2009
  • Several species of the genus Pseudo-nitzschia produce the neurotoxin domoic acid (DA) known to be responsible for amnesic shellfish poisoning. In spite of the potentially toxic effects on marine ecosystem, even the representative Pseudo-nitzschia species occurring in Korean coastal waters have not been clearly reported. Plankton samples from several outer coastal sites of Tongyeong were collected fortnightly from May to November 2008 and the presence of diatoms of the genus Pseudo-nitzschia was examined using light and scanning electron microscopy. Thirteen species were observed, including P. americana, P. brasiliana, P. caciantha, P. calliantha, P. cuspidata, P. delicatissima, P. micropora, P. multiseries, P. multistriata, P. pseudodelicatissima, P. pungens, P. subfraudulenta, and P. subpacifica. The number of Pseudo-nitzschia species observed were only four in May, which was minimum during this survey, and then gradually increased attaining maximum, twelve, in September. After September it began to decrease again and got to five in November. Of these, P. americana, P. brasiliana, P. caciantha, P. calliantha, P. micropora, and P, pseudodelicatissima are new records for the Korean coastal waters and P. calliantha, P. cuspidata, P. delicatissima, P multiseries, P. multistriata, and P. pungens have been reported as DA producers around the world, but the potential toxicity of these species was not ascertained in Tongyeong area.

Spatial distributions of phytoplankton community in the coastal waters of South Sea, Korea during the early summer of 2018 (2018년 이른 여름 남해 연안해역 식물플랑크톤 군집의 공간분포 특성)

  • Yoon, Yang Ho;Park, Jong Sick;Kim, Byoung Sub
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.2
    • /
    • pp.164-176
    • /
    • 2019
  • For this study, we carried out a field survey on the analysis for the spatial distributions of phytoplankton community in the eleven areas of the Korean South Sea during the early summer of 2018. The results from the study showed that the phytoplankton community consisted of 56 genera and 105 species showing by diatoms with 52.4%, dinoflagellates with 40.0% and other phytoflagellates with 7.6%. The cell density of the phytoplankton ranged from 5.5 to 593.2 cells mL-1. The species number and cell density of the phytoplankton were high in the eastern waters of the South Sea and low in the western one. The phytoplankton community showed the characteristics of being dominated by the diatoms except in the Geumpo of Namhae, Ocheon-dong of Yeosu and Oenarodo of Goheung. The dominant species of the phytoplankton community were the centric diatoms, Skeletonema costatum-like species (ls), except for the Ocheon-dong and Chungdo of Wando. However, the Ocheon-dong was dominated by toxic dinoflagellate, Gymnodinium catenatum by 41.1% dominance. On the other hand, Keumpo and Oenarodo was by dinoflagellate, Tripos fusus more than 12% dominance in the surface layer. The spatial distribution of the phytoplankton community in the coastal waters of the Korean South Sea in the early summer were determined by the supply of nutrients through precipitation.

The Ecological Study of Phytoplankton in Kyeonggi Bay, Yellow Sea. III. Phytoplankton Composition, Standing Crops, Tychopelagic Plankton. (西海 京畿 植物 플랑크톤에 대한 생態學的 硏究 III. 植物플랑크톤 種조성, 現存量, 일시浮流플랑크톤)

  • 최중기;심재형
    • 한국해양학회지
    • /
    • v.21 no.3
    • /
    • pp.156-170
    • /
    • 1986
  • The phytoplankton ecology of estuarine waters was investigated in the Kyeonggi Bay from May 1981 to September 1982 on monthly basis. In this study area, a total of 228 phytoplankton species was identified. Among these taxa, the most dominant species are diatoms in this area. Tychopelagic plankton occupies 40.4% of total species. The percentage of tychopelagic plankton density ranged from 10.2% in September to 92.7% in March of monthly standing crops. From late autumn to early spring, the percentage values are more than 72%. They play an important role from late autumn to early spring in this estuarine plandton community. These tychopelagic planktons are induced from benthic diatoms. Because the bottom shear stresses generated by the tides and winds are stronger than the adhesive and tractive force of benthic diatoms, most of benthic diatoms must be resuspended into tychopelagic suspensions during autumn and winter. Paralia sulcata is the most important tychopelagic plankton as an indicator species of water mixing in the eastern coastal area of Yellow Sea. This species seems to have even broader tolerance to the environmental stress than Skeletonema costalum, and tends to fill the gaps in winter, when the phytoplandton is relatively unsuccessful. Skeletonema costatum and Chaetoceros debilis are dominant in other seasons. Typical blooms of phytoplankton occur in spring and early autumn, The first bloom is started by Skeletonema costatum in early May, second peak is formed by various diatom population in September.

  • PDF

Study of the Food Characteristics on Pacific Oyster Crassostrea gigas and Manila Clam Ruditapes phillippinarum in the Intertidal Zone of Taeahn, Korea (태안 조간대에 서식하는 참굴과 바지락의 먹이특성에 관한 연구)

  • Baek, Seung-Ho;Lee, Ju-Yun;Lee, Hea-Ok;Han, Myung-Soo
    • Korean Journal of Environmental Biology
    • /
    • v.26 no.3
    • /
    • pp.145-158
    • /
    • 2008
  • To assess the source of oyster (Crassostrea gigas) and clam (Ruditapes phillippinarum), phytoplankton community structures in the water column and sediment, including the composition of phytoplankton in oyster and clam digestive organs were investigated bimonthly from December 2006 to June 2007 in the Taeahn coastal waters. During the sampling period, water temperature and salinity varied from 7 to 23$^{\circ}C$ and 34 to 35 PSU, respectively. Total phytoplankton abundances at St. O in the water column were higher than those at St. J, whereas total phytoplankton abundances at St. O in the sediment were lower. In addition, total phytoplankton abundances in the water column and sediment were observed to be relatively higher in February and April 2007. Among the diatoms, Paralia sulcata was always dominant, accounting for 41$\sim$87% of total phytoplankton, except St. J for February 2007 during the sampling period. The following phytoplankton compositions observed in the digestive organs of oyster and clam appeared: diatoms such as genus Paralia, Navicula, Melosira and Coscinodiscus, Silicoflagellate Dictyocha, dinoflagellates Prorocentrum and Dinophysis. Phytoplankton compositions observed in the digestive organs of oyster and clam corresponded relatively well with the species composition appeared in the water column and sediments of each season. A significant relationship was found between individual weight of oyster or clam and their digestive organs weight, while there was not a close correlation with total phytoplankton amount. We suggest that P. sulcata always dominated as one of important the food source of oyster and clam in the marine ranching ground of Taeahn coastal waters.

Effects of an Artificial Breakwater on the Distributions of Planktonic Microbial Communities

  • Kim, Young-Ok;Yang, Eun-Jin;Kang, Jung-Hoon;Shin, Kyoung-Soon;Chang, Man;Myung, Cheol-Soo
    • Ocean Science Journal
    • /
    • v.42 no.1
    • /
    • pp.9-17
    • /
    • 2007
  • The summer distributions of planktonic microbial communities (heterotrophic and phtosynthetic bacteria, phtosynthetic and heterotrophic nanoflagellates, ciliate plankton, and microphytoplankton) were compared between inner and outer areas of Lake Sihwa, divided by an artificial breakwater, located on the western coast of Korea, in September 2003. The semi-enclosed, inner area was characterized by hyposaline surface water (<17 psu), and by low concentrations of dissolved oxygen (avg. $0.4\;mg\;L^{-1}$) and high concentrations of inorganic nutrients (nitrogenous nutrients $>36\;{\mu}M$, phosphate $>4\;{\mu}M$) in the bottom layer. Higher densities of heterotrophic bacteria and nanoflagellates also occurred in the inner area than did in the outer area, while microphytoplankton (mainly diatoms) occurred abundantly in the outer area. A tiny tintinnid ciliate, Tintinnopsis nana, bloomed into more than $10^6\;cells\;L^{-1}$ at the surface layer of the inner area, while its abundance was much lower ($10^3-10^4\;cells\;L^{-1}$) in the outer area of the breakwater. Ciliate abundance was highly correlated with heterotrophic bacteria (r = 0.886, p < 0.001) and heterotrophic flagellates (r = 0.962, p < 0.001), indicating that rich food availability may have led to the T. nana bloom. These results suggest that the breakwater causes the eutrophic environment in artificial lakes with limited flushing of enriched water and develops into abundant bacteria, nanoflagellates, and ciliates.

Feeding behavior of the copepod Temora turbinata: clearance rate and prey preference on the diatom and microbial food web components in coastal area

  • Chang, Kwang-Hyeon;Doi, Hideyuki;Nishibe, Yuichiro;Nam, Gui-Sook;Nakano, Shin-Ichi
    • Journal of Ecology and Environment
    • /
    • v.37 no.4
    • /
    • pp.225-229
    • /
    • 2014
  • Feeding behavior of Temora turbinata was investigated through laboratory experiments with special emphasis on its food preference and consequent clearance rate on diatom and microbial components given as common natural food assemblage of coastal area (Uchiumi, Uwa Sea, Japan). Among available prey items, T. turbinata showed the highest clearance rate for Thalassiosira spp. ($0.23{\pm}0.08L\;Temora^{-1}day^{-1}$) followed by Chaetoceros spp. ($0.11{\pm}0.03L\;Temora^{-1}day^{-1}$), but clearance rates for other diatom, Nitzschia spp. was lower (0.03 to $0.07L\;Temora^{-1}day^{-1}$). Bacterial abundances showed no response against 24-h feeding of T. turbinata. Feeding of T. turbinata on heterotrophic nanoflagellates (HNF) was apparent when clearance rates of T. turbinata on diatoms were relatively low, but T. turbinata did not consume HNF as well as ciliates with Thalassiosira spp. of which clearance rate was highest. The results suggest that HNF and ciliates are possible supplementary prey item for T. turbinata, but their contribution as food sources can be limited by the presence of other prey items such as preferable diatom species.