• Title/Summary/Keyword: coarse-to-fine content

Search Result 191, Processing Time 0.024 seconds

The Quality Status of Aggregate for Domestic Ready-mixed Concrete and the Effect of Aggregate Quality in Concrete

  • Kim, Yong-Ro;Lee, Jae-Hyun;Min, Choong-Siek;Park, Jong-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.1
    • /
    • pp.11-20
    • /
    • 2014
  • This research examined the effect of the quality of aggregate on concrete workability and compressive strength through an investigation into regional aggregate used in domestic ready mixed concrete plants. Through the research, it was found that aggregate for ready mixed concrete shows poor quality overall. The main factor of deterioration in the quality of the concrete is the particle size of fine aggregate and fine particle content in coarse aggregate. The quality of aggregate significantly influences concrete's workability, which is defined based on 0.08mm passage related with powder and absorption. In addition, poor aggregate quality leads to increased water content in concrete to secure workability, which is related with a decline in the compressive strength and durability of concrete.

THE EFFECTS OF TiN PARTICLES ON THE HAZ MICROSTRUCTURE AND TOUGHNESS IN HIGH NITROGEN TiN STEEL

  • Jeong, Hong-Chul;An, Young-Ho;Choo, Wung-Yong
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.217-221
    • /
    • 2002
  • In the coarse grain HAZ adjacent to the fusion line, most of the TiN particles in conventional Ti added steel are dissolved and austenite grain growth is easily occupied during welding process. To avoid this difficulty, thermal stability of TiN particle is improved by increasing the nitrogen content in steel. In this study, the effect of high nitrogen TiN particle on preventing austenite grain growth in HAZ was investigated. Increased thermal stability of TiN particle is helpful for preventing the austenite grain growth by pinning effect. High nitrogen TiN particle in simulated HAZ were not dissolved even at high temperature such as 1400 C and prevented the austenite grain growth in simulated HAZ. Owing to small austenite grain size in HAZ the width of coarse grain HAZ in high nitrogen TiN steel was decreased to 1/10 of conventional TiN steel. Even high heat input welding, the microstructure of coarse grain HAZ consisted of fine polygonal ferrite and pearlite and toughness of coarse grain HAZ was significantly improved.

  • PDF

Chemical Properties of Indoor Individual Particles Collected at the Daily Behavior Spaces of a Factory Worker

  • Ma, Chang-Jin;Kang, Gong-Unn;Sakai, Takuro
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.2
    • /
    • pp.122-130
    • /
    • 2017
  • The main purpose of the study was to clarify the properties of individual particles collected at each behavior space of a factory worker. The samplings of size-segregated ($PM_{2.1-1.1}$ and $PM_{4.7-3.3}$) indoor particles were conducted at three different behavior spaces of a factory worker who is engaged in an auto parts manufacturing plant (i.e., his home, his work place in factory, and his favorite restaurant). Elemental specification (i.e., relative elemental content and distribution in and/or on individual particles) was performed by a micro-PIXE system. Every element detected from the coarse particulate matters of home was classified into three groups, i.e., a group of high net-counts (Na, Al, and Si), a group of intermediate net-counts (Mg, S, Cl, K, and Ca), and a group of minor trace elements (P, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, and Pb). The results of EF for $PM_{4.7-3.3}$ in home indicated that several heavy metals were generated from the sources within the house itself. An exceptional feature shown in the individual particles in workplace is that Cr, Mn, and Co were clearly detected in both fine and coarse particles. Cluster analysis suggested that the individual coarse particles ($PM_{4.7-3.3}$) collected at the indoor of factory were chemically heterogeneous and they modified with sea-salt, mineral, and artificially derived elements. The principal components in individual coarse particles collected at restaurant were sea-salt and mineral without mixing with harmful trace elements like chromium and manganese. Compared to the indoor fine particles of home and restaurant, many elements, especially, Cl, Na, Cr, Mn, Pb, and Zn showed overwhelmingly high net-counts in those of factory.

Effect Analysis of Mix Designing Factors on Workability and Rheological Parameters of Self-Compacting Concrete (배합요인이 자기충전 콘크리트의 워커빌리티 및 레올로지 파라미터에 미치는 영향 분석)

  • Yoon, Seob;Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.3
    • /
    • pp.235-242
    • /
    • 2018
  • The objective of the paper is to investigate the effect of mix designing factors on the workability and rheological parameters of self compacting concrete in order to facilitate the difficulties of quality control of high sensitivity of SCC. Mix proportions of SCC were prepared with various conditions of coarse, and fine aggregate, and unit water content, and the SCC mixtures were tested on workability, rheological properties to provide basic data for quantitative evaluation. Test results indicated that the yield stress of SCC decreased with increasing the coarse aggregate volume ratio, and increased with increasing the amount of VMA. However, unit water content, fine aggregate type, and air content didn't affect the yield stress value. The plastic viscosity according to the mixing factors showed a similar tendency to the yield stress. In addition, there was no correlation between yield stress and workability (flow, T50, V-lot). However, there was closely correlation among plastic viscosity and T50 and V-lot. Especially, T50 and V-lot time decreased with decreasing plastic viscosity.

Predicting the compressive strength of SCC containing nano silica using surrogate machine learning algorithms

  • Neeraj Kumar Shukla;Aman Garg;Javed Bhutto;Mona Aggarwal;Mohamed Abbas;Hany S. Hussein;Rajesh Verma;T.M. Yunus Khan
    • Computers and Concrete
    • /
    • v.32 no.4
    • /
    • pp.373-381
    • /
    • 2023
  • Fly ash, granulated blast furnace slag, marble waste powder, etc. are just some of the by-products of other sectors that the construction industry is looking to include into the many types of concrete they produce. This research seeks to use surrogate machine learning methods to forecast the compressive strength of self-compacting concrete. The surrogate models were developed using Gradient Boosting Machine (GBM), Support Vector Machine (SVM), Random Forest (RF), and Gaussian Process Regression (GPR) techniques. Compressive strength is used as the output variable, with nano silica content, cement content, coarse aggregate content, fine aggregate content, superplasticizer, curing duration, and water-binder ratio as input variables. Of the four models, GBM had the highest accuracy in determining the compressive strength of SCC. The concrete's compressive strength is worst predicted by GPR. Compressive strength of SCC with nano silica is found to be most affected by curing time and least by fine aggregate.

Effective Prediction of Thermal Conductivity of Concrete Using Neural Network Method

  • Lee, Jong-Han;Lee, Jong-Jae;Cho, Baik-Soon
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.3
    • /
    • pp.177-186
    • /
    • 2012
  • The temperature distributions of concrete structures strongly depend on the value of thermal conductivity of concrete. However, the thermal conductivity of concrete varies according to the composition of the constituents and the temperature and moisture conditions of concrete, which cause difficulty in accurately predicting the thermal conductivity value in concrete. For this reason, in this study, back-propagation neural network models on the basis of experimental values carried out by previous researchers have been utilized to effectively account for the influence of these variables. The neural networks were trained by 124 data sets with eleven parameters: nine concrete composition parameters (the ratio of water-cement, the percentage of fine and coarse aggregate, and the unit weight of water, cement, fine aggregate, coarse aggregate, fly ash and silica fume) and two concrete state parameters (the temperature and water content of concrete). Finally, the trained neural network models were evaluated by applying to other 28 measured values not included in the training of the neural networks. The result indicated that the proposed method using a back-propagation neural algorithm was effective at predicting the thermal conductivity of concrete.

Assessment of Subsoil Compaction by Soil Texture on Field Scale

  • Cho, Hee-Rae;Jung, Kang-Ho;Zhang, Yong-Seon;Han, Kyung-Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.6
    • /
    • pp.628-633
    • /
    • 2015
  • It is necessary to assess soil physical properties and crop growth treated by compaction to establish the soil management standard. This study evaluated the bulk density, strength and crop growth after subsoil compaction for sandy loam and loam on the field in Suwon, Korea. The treatments were compaction and deep tillage. Sandy loam and loam were classified to coarse soil and fine soil, respectively, depending on clay contents. In coarse soil, bulk density of compacted plot was 8~17% greater than control and deep tilled plot. The root growth was worse in compacted plot compared with control. In fine soil, plow pan was not observed in deep tilled plot with 5~19% smaller bulk density than compacted plot and control. Deep tillage improved the crop growth. The soil physical properties by compaction were dependent on clay content and crop growth limit depended on the traffic driving.

Undrained Shear Behavior of Sandy Soil Mixtures (사질혼합토의 비배수 전단거동 특성)

  • Kim, Ukgie;Ahn, Taebong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.8
    • /
    • pp.13-24
    • /
    • 2011
  • In the part of geotechnical engineering, soils are classified as either the coarse grained soil or the fine-grained soil following the fine content($F_c$=50%) according to the granularity, and appropriate design codes are used respectively to represent their mechanical behaviour. However, sand-clay mixtures, which are typically referred to as intermediate soils, cannot be easily categorized as either sand or clay. In this study, several monotonic undrained shear tests were carried out on Silica sand fine mixtures with various proportions, and a wide range of soil structures, ranging from one with sand dominating the soil structure to one with fines controlling the behaviour, were prepared using compaction method or pre-consoldation methods in prescribed energy. The shear strength of mixtures below the threshold fines content is observed that as the fines content increases, maximum deviator stress ratio decrease for dense samples while an increase is noted for loose samples. Then, by using the concept of fines content and granular void ratio, the monotonic shear strength of the mixtures was estimated. It was found that the shear behavior of mixtures is greatly dependent on the skeleton structure of sand particles.

Characteristics of the Segregation Sedimentation for Dredged Soil Depending on Fines Content (세립분 함량에 따른 준설토의 분리 퇴적 특성)

  • Park, Minchul;Lee, Jongkyung;Shin, Hyohee;Lee, Song
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.6
    • /
    • pp.25-34
    • /
    • 2011
  • Dredged and reclaimed ground in progress at the West Coast has a high content of coarse particles. There will be different behaviors depending on the location of outlet and engineering properties of soil when its ground is dredged by a pump. Therefore, the experiments were conducted that were manufactured about the chamber equipment of length 2,650mm, width 770mm, height 735mm, experimented step filling method and water content about 300%, 500% and 700% respectively with SM and ML samples in order to realize segregating sediment characteristics of dredged ground with changing much fine. With results of analysis, ML sample by higher initial water content was reached to the period of complete sedimentation and coefficient of sedimentation consolidation increased with increases of diffusion distance. SM samples showed behavior of coarse soil with diffusion distance 120cm, diffusion distance of more than 120cm showed a similar tendency with ML sample under the influence of fines. In ML sample, it could be also found that lower depth and the more increasing diffusion distance increase in percentage of sieve #200 but water content decreases. In SM sample, it could be also found that coarse soil was piled at near the diffusion distance zone but fine soil was piled at the far diffusion distance zone and prominent difference showed between percentage of sieve #200 and water content(%) by boundary point 120cm~160cm of both samples. Also, shear strength was expressed ML-maximum 2.97kPa, SM-maximum 10.2kPa with diffusion distance.

Establishment of Process of Manufacture of Ti-6Al-4V Alloy Sintering Body by MIM

  • Otsuka, A.;Suzuki, K.;Achikita, M.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.759-760
    • /
    • 2006
  • Ti-6Al-4V has low specific gravity, high corrosion resistance and superior mechanical properties but it is very difficult to control oxygen content in MIM process. It is necessary to use powders with coarse particle size to decrease oxygen content of powders, so feedstocks with poor fluidity and sintered bodies with lower density are obtained in such cases. Fine titanium hydride-dehydride powders were blended with atomized powders to accomplish higher fluidity and sintered density. Sintered bodies had higher sintered density and mechanical properties equivalent to those of wrought materials by controlling oxygen content less than 0.35mass%.

  • PDF