• Title/Summary/Keyword: coarse-to-fine content

Search Result 191, Processing Time 0.026 seconds

Spatio-temporal Variation and Evaluation of Benthic Healthiness of Macrobenthic Polychaetous Community on the Coast of Ulsan (울산 연안 해역 저서다모류 군집의 시·공간 변동 및 저서건강도 평가)

  • Jeong, Bong Geun;Shin, Hyun Chool
    • Ocean and Polar Research
    • /
    • v.40 no.4
    • /
    • pp.223-235
    • /
    • 2018
  • This study was carried out to investigate benthic sedimentary environments and benthic polychaetous communities on the coast of Ulsan, located on the southern East Sea of Korea. This survey was conducted at 15 stations, four times seasonally in January, April, July and October 2016. From the coast to the outer sea, surface sediments turned into fine grained sediments. There were complex coarse-grained sedimentary facies in various forms in the coastal zones while those with mud facies were found in the offshore zone. Organic matter content (LOI) and sulfide amount (AVS) recorded extremely high values, and increased from the coast to the outer sea, showing a similar trend to mud content with depth. The benthic polychaetous community revealed a mean density of $525ind./m^2$, and the total species number of species was 84. The major dominant polychaetous species were Magelona japonica, Lumbrineris longifolia and Heteromastus filiformis throughout the four seasons. Magelona japonica was concentrated predominantly in shallow coastal areas, but was present in all the regions of the survey area. Lumbrineris longifolia showed higher density in offshore regions more than 30 m deep, whereas H. filiformis showed higher density in coastal areas less than 30 m in depth. As a result of cluster analysis, the study area was divided into three ecological areas according to species composition, such as the northern coastal area between Ulsan PortOnsan Port, the southern area around Hoeya River and the outer sea area. Benthic environments in the study area, as determined by AMBI and BPI index, maintained a healthy condition in all four seasons with the AMBI at a level above GOOD and BPI at a level above FAIR. As organic matter accumulation continues to take place in the Ulsan coastal area, it is essential that detailed research activities continue to be carried out and ongoing monitoring be maintained.

Optimum Mix Proportion and Characteristics of the Combined Self Compacting Concrete according to Cement Types (시멘트 종류에 따른 병용계 자기충전 콘크리트의 최적배합비와 특성)

  • Kwon, Yeong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.1
    • /
    • pp.55-64
    • /
    • 2009
  • This study is aimed to derive the optimum mix proportion of the combined self compacting concrete according to cement types (blast-furnace slag cement and belite cement) and to propose the basic data to field construction work after evaluating the quality properties. Specially, lime stone powder (LSP) as binder and viscosity agent are used in the combined self compacting concrete because slurry wall of an underground LNG storage tank should be kept stability of quality during concrete working. Replacement ratio of LSP is determined by confined water ratio test and main design factors including fine aggregate ratio ($S_r$), coarse aggregate ratio ($G_v$) and water-cement ratio (W/C) are selected. Also, quality properties including setting time, bleeding content, shortening depth and hydration heat on the optimum mix proportion of the combined self compacting concrete according to cement type are compared and analyzed. As test results, the optimum mix proportion of the combined self compacting concrete according to cement type is as followings. 1) Slag cement type-replacement ratio of LSP 13.5%, $S_r$ 47% and W/C 41%. 2) Belite cement type-replacement ratio of LSP 42.7%, Sr 43% and W/C 51%. But optimum coarse aggregate ratio is 53% regardless of cement types. Also, as test results regarding setting time, bleeding content, shortening depth and hydration heat of the combined self compacting concrete by cement type, belite cement type is most stable in the quality properties and is to apply the actual construction work.

Develop a sustainable wet shotcrete for tunnel lining using industrial waste: a field experiment and simulation approach

  • Jinkun Sun;Rita Yi Man Li;Lindong Li;Chenxi Deng;Shuangshi Ma;Liyun Zeng
    • Advances in concrete construction
    • /
    • v.15 no.5
    • /
    • pp.333-348
    • /
    • 2023
  • Fast infrastructure development boosts the demand for shotcrete. Despite sand and stone being the most common coarse and fine aggregates for shotcrete, excessive exploration of these materials challenges the ecological environment. This study utilized an industrial solid waste, high-titanium heavy slag, blended with steel fibers to form Wet Shotcrete of Steel Fiber-reinforced High-Titanium Heavy Slag (WSSFHTHS). It investigated its workability, shotcrete performance and mechanical properties under different water-to-cement ratios, fly ash content, superplasticizer dosage, and steel fiber content. The tunnel excavation and support were investigated by conducting finite element numerical simulation analysis and was used in 3 tunnel lining pipes in Zhonggouwan tailing pond. The major findings are as follows: (1) The water-to-cement ratio (w/c ratio) significantly impacted the compressive strength of WSSFHTHS. The highest 28-day compressive strength of 60 MPa was achieved when the w/c ratio was 0.38; (2) Adding fly ash improved the workability and shotcrete performance and strength development of WSSFHTHS. The best anti-permeability performance was achieved when the fly ash constituted 15%, with the lowest permeability coefficient of 4.596 × 10-11 cm/s; (3) The optimum superplasticizer dosage for WSSFHTHS is 0.8%. It provided the best workability and shotcrete performance. Excessive dosage resulted in water bleeding and poor aggregate encapsulation, while insufficient dosage decreased flowability and adversely affected shotcrete performance; (4) The dosage of steel fibers significantly impacted the flexural and tensile strength of WSSFHTHS. When the steel fiber dosage was 45 kg/m3, the 28-day flexural and tensile strengths were 8.95 MPa and 6.15 MPa, respectively; (5) By integrating existing shotcrete techniques, the optimal lining thickness was 80 mm for WSSFHTHS per simulation. The results revealed that after using WSSFHTHS, the displacement of the tunnel surrounding the rock significantly improved, with no cracks or hollows, similar to the simulation results.

Characteristics and classification of paddy soils on the Gimje-Mangyeong plains (김제만경평야(金堤萬頃平野)의 답토양특성(沓土壤特性)과 그 분류(分類)에 관(關)한 연구(硏究))

  • Shin, Yong Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.5 no.2
    • /
    • pp.1-38
    • /
    • 1972
  • This study, designed to establish a classification system of paddy soils and suitability groups on productivity and management of paddy land based on soil characteristics, has been made for the paddy soils on the Gimje-Mangyeong plains. The morphological, physical and chemical properties of the 15 paddy soil series found on these plains are briefly as follows: Ten soil series (Baeggu, Bongnam, Buyong, Gimje, Gongdeog, Honam, Jeonbug, Jisan, Mangyeong and Suam) have a B horizon (cambic B), two soil series (Geugrag and Hwadong) have a Bt horizon (argillic B), and three soil series (Gwanghwal, Hwagye and Sindab) have no B or Bt horizons. Uniquely, both the Bongnam and Gongdeog series contain a muck layer in the lower part of subsoil. Four soil series (Baeggu, Gongdeog, Gwanghwal and Sindab) generally are bluish gray and dark gray, and eight soil series (Bongnam, Buyong, Gimje, Honam, Jeonbug, Jisan, Mangyeong and Suam) are either gray or grayish brown. Three soil series (Geugrag, Hwadong and Hwagye), however, are partially gleyed in the surface and subsurface, but have a yellowish brown to brown subsoil or substrata. Seven soil series (Bongnam, Buyong, Geugrag, Gimje, Gongdeog, Honam and Hwadong) are of fine clayey texture, three soil series (Baeggu, Jeonbug and Jisan) belong to fine loamy and fine silty, three soil series (Gwanghwal, Mangyeong and Suam) to coarse loamy and coarse silty, and two soil series (Hwagye and Sindab) to sandy and sandy skeletal texture classes. The carbon content of the surface soil ranges from 0.29 to 2.18 percent, mostly 1.0 to 2.0 percent. The total nitrogen content of the surface soil ranges from 0.03 to 0.25 percent, showing a tendency to decrease irregularly with depth. The C/N ratio in the surface soil ranges from 4.6 to 15.5, dominantly from 8 to 10. The C/N ratio in the subsoil and substrata, however, has a wide range from 3.0 to 20.25. The soil reaction ranges from 4.5 to 8.0. All soil series except the Gwanghwal and Mangyeong series belong to the acid reaction class. The cation exchange cpacity in the surface soil ranges from 5 to 13 milliequivalents per 100 grams of soil, and in all the subsoil and substrata except those of a sandy texture, from 10 to 20 milliequivalents per 100 grams of soil. The base saturation of the soil series except Baeggu and Gongdeog is more than 60 percent. The active iron content of the surface soil ranges from 0.45 to 1.81 ppm, easily-reduceable manganese from 15 to 148 ppm, and available silica from 36 to 366 ppm. The iron and manganese are generally accumulated in a similar position (10 to 70cm. depth), and silica occurs in the same horizon with that of iron and manganese, or in the deeper horizons in the soil profile. The properties of each soil series extending from the sea shore towards the continental plains change with distance and they are related with distance (x) as follows: y(surface soil, clay content) = $$-0.2491x^2+6.0388x-1.1251$$ y(subsoil or subsurface soil, clay content) = $$-0.31646x^2+7.84818x-2.50008$$ y(surface soil, organic carbon content) = $$-0.0089x^2+0.2192x+0.1366$$ y(subsoil or subsurface soil, pH) = $$-0.0178x^2-0.04534x+8.3531$$ Soil profile development, soil color, depositional and organic layers, soil texture and soil reaction etc. are thought to be the major items that should be considered in a paddy soil classification. It was found that most of the soils belonging to the moderately well, somewhat poorly and poorly drained fine and medium textured soils and moderately deep fine textured soils over coarse materials, produce higher paddy yields in excess of 3,750 kg/ha. and most of the soils belonging to the coarse textured soils, well drained fine textured soils, moderately deep medium textured soils over coarse materials and saline soils, produce yields less than 3,750kg/ha. Soil texture of the profile, available soil depth, salinity and gleying of the surface and subsurface soils etc. seem to be the major factors determining rice yields, and these factors are considered when establishing suitability groups for paddy land. The great group, group, subgroup, family and series are proposed for the classification categories of paddy soils. The soil series is the basic category of the classification. The argillic horizon (Bt horizon) and cambic horizon (B horizon) are proposed as two diagnostic horizons of great group level for the determination of the morphological properties of soils in the classification. The specific soil characteristics considered in the group and subgroup levels are soil color of the profile (bluish gray, gray or yellowish brown), salinity (salic), depositonal (fluvic) and muck layers (mucky), and gleying of surface and subsurface soils (gleyic). The family levels are classified on the basis of soil reaction, soil texture and gravel content of the profile. The definitions are given on each classification category, diagnostic horizons and specific soil characteristics respectively. The soils on these plains are classified in eight subgroups and examined under the existing classification system. Further, the suitability group, can be divided into two major categories, suitability class and subclass. The soils within a suitability class are similar in potential productivity and limitation on use and management. Class 1 through 4 are distinguished from each other by combination of soil characteristics. Subclasses are divided from classes that have the same kind of dominant limitations such as slope(e), wettness(w), sandy(s), gravels(g), salinity(t) and non-gleying of the surface and subsurface soils(n). The above suitability classes and subclasses are examined, and the definitions are given. Seven subclasses are found on these plains for paddy soils. The classification and suitability group of 15 paddy soil series on the Gimje-Mangyeong plains may now be tabulated as follows.

  • PDF

Ecological Studies of Plants for Control of Environmental Pollution, III -The Studies on the Content and Contamination of Heavy Metals and Vegetation of Roadside- (환경오염 방지를 위한 식물의 생태학적 연구(III) -도로변 식생과 중금속 함량 및 오염에 관한 연구)

  • 차종환
    • Journal of Plant Biology
    • /
    • v.17 no.4
    • /
    • pp.158-162
    • /
    • 1974
  • Some ecological attributes of perennial plants and Pb contamination were analyzed for study plots near an entrance of Nevade Test Site at Mercury Valley, Nye County, Nevada. The surface of the desert pavement soil was composed of stones (1 to 4cm diameter). The underside of each stone was coated with coarse and fine sand (about 90%). The profiles of soil were constituted with the A-horizon and C-horizon only. The soil pH at the plots ranges from 7.6 to 8.5, C/N was 13 and cation exchange capacity showed 15me/100g. Nine species and 42 number of individuals were found in all plots. Franseria dumosa and Larrea divaricata were dominant species. The discrete clumps of vegetation were consisted of 9 species of common perennials and these were covered about 25% on desert pavement, on the other words, bare area without vegetation was about 75%. The size and spacing of the plants was irregular. Community coefficient as comparison between shrub species in these study area and those in near the low elevation desert indicated a low degree of similarity. Density, cover and productivity in the study plots as compared with those in the nearest study areas in Mercury Valley showed a higher value. The soils in the studied area involved high heavy metal contents in the plant tissue was higher than those of its soil. The leavds of Lycium andersonii tended to accumulate more Zn and Mo than those of the other species. Larrea divaricata leaves accumulated very high leaves of Fe and Ephedra nevadensis were generally high in Mn. Lead contamination was apparent in foliage of desert vegetation collected alongside the roadway, reflecting the variation in traffic volume. Lead contents greater than fifteen-fold of normal (low traffic) were found in plant foliage alongside the heavily traveled roadway. Lead content of old foliage by the heavily traveled roadway was as much as 129 ppm but that of new foliage 17 ppm only.

  • PDF

Fundamental Study on the Application of a Surface Layer using Cold Central-Plant Recycling (플랜트 생산 재활용 상온 혼합물의 도로 표층 적용성에 관한 기초연구)

  • Choi, Jun Seong
    • International Journal of Highway Engineering
    • /
    • v.20 no.1
    • /
    • pp.69-76
    • /
    • 2018
  • PURPOSES : This study determined the optimal usage rate of RAP (reclaimed asphalt pavement) using cold central-plant recycling (CCPR) on a road-surface layer. In addition, a mixture-aggregate gradation design and a curing method based on the proposed rate for the surface-layer mix design were proposed. METHODS : First, current research trends were investigated by analyzing the optimum moisture content, mix design, and quality standards for surface layers in Korea and abroad. To analyze the aggregate characteristics of the RAP, its aggregate-size characteristics were analyzed through the combustion asphalt content test and the aggregate sieve analysis test. Moreover, aggregate-segregation experiments were performed to examine the possibility of RAP aggregate segregation from field compaction and vehicle traffic. After confirming the RAP quality standards, coarse aggregate and fine aggregate, aggregate-gradation design and quality tests were conducted for mixtures with 40% and 50% RAP usage. The optimum moisture content of the surface-layer mixture containing RAP was tested, as was the evapotranspiration effect on the surface-layer mixture of the optimum moisture content. RESULTS : After analyzing the RAP recycled aggregate size and extraction aggregate size, 13-8mm aggregate was found to be mostly 8mm aggregate after combustion. After using surface-chipping and mixing methods to examine the possibility of RAP aggregate segregation, it was found that the mixing method contributed very little for 3.32%, and because the surface-chipping method applied compaction energy directly as the maximum assumption the separation ratio was 15.46%. However, the composite aggregate gradation did not change. Using a 40% RAP aggregate rate on the surface-layer mixture for cold central-plant recycling satisfied the Abroad quality standard. The optimum moisture content of the surface-layer mixture was found to be 7.9% using the modified Marshall compaction test. It was found that the mixture was over 90% cured after curing at $60^{\circ}C$ for two days. CONCLUSIONS : To use the cold central-plant recycling mixture on a road-surface layer, a mixture-aggregate gradation design was proposed as the RAP recycled aggregate size without considering aggregate segregation, and the RAP optimal usage rate was 40%. In addition, the modified Marshall compaction test was used to determine the optimum moisture content as a mix-design parameter, and the curing method was adapted using the method recommended by Asphalt Recycling & Reclaiming Association (ARRA).

Effect of Random Interesterification on the Physicochemical Properties in Blends of Corn Germ Oil and Fully Hydrogenated Soybean Oil (옥수수기름과 극도경화대두 혼합유의 이화학적 성질에 대한 무작위 에스테르 교환의 영향)

  • Shin, Hyo-Sun;Chung, Kwang-Hyun;Chun, Je-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.360-365
    • /
    • 1991
  • Effect of random interesterification on the physicochemical properties in blends of corn germ oil and fully hydrogenated soybean oil was studied. Interesterification by using 0.4% sodium methoxide at $80^{\circ}C$ was completed in 35 minutes as determined by HPLC analysis for triglyceride composition. Changes of melting point, solid fat content, crystal form, fatty acid and triglyceride composition was investigated. After the interesterification, melting point and solid fat content were decreased, and coarse and large crystals were modified to fine and uniform. Fatty acid composition was not altered but triglyceride composition was largely altered. Interesterified blends of corn germ oil and fully hydrogenated soybean oil made with 80%, 20% and 75%. 25%, respectively, had desirable characteristics of the margarine for home use.

  • PDF

Change in Geochemical Characteristics of Surface Sediments in the Nakdong River Main Stream (낙동강 본류에 분포하는 표층 퇴적물의 지화학적 특성 변화)

  • Kim, Shin;Lee, Kwonchul;Kim, Jueon;Jung, Kangyoung;Ahn, Jungmin;Kim, Hyounggeun;Lee, Injung;Shin, Dongseok;Yang, Deukseok
    • Journal of Environmental Science International
    • /
    • v.26 no.3
    • /
    • pp.311-324
    • /
    • 2017
  • To certificate change in the geochemical characteristics of surface sediments in the main stream of the Nakdong River, surface sediments from 12 sampling sites during the first and second half year (total 24 sampling sites) were collected and analyzed for grain size, ignition loss, total organic carbon and heavy metal content. Surface sediments mainly composed of sand (coarse and medium sand) and fining changed from the first half to the second half of the year. Ignition loss, total organic carbon and heavy metals content increased in the second half of the year. Some heavy metals (Zn, Ni and Cu) were found to be at the lowest effect levels according to Ontario sediment quality guidelines. Additionally, most heavy metals were found to be at the non polluted level and level I according to USEPA sediment quality standards and National Institute of Environmental Research sediment pollution evaluation standard, respectively. The enrichment factor (< 1) and index of geoaccmulation (< 0) were non polluted in the study area. The correlation analysis results showed that ignition loss, total organic carbon and heavy metal content were highly correlated with grain size. Regarding changes in geochemical characteristics of surface sediments in the study area, grain size fine and organic matter and heavy metal content increased in the second half year. Nonetheless these results indicated pollution levels that did not adversely affect the benthos.

Microstructural Changes during Tempering Treatment of Nitrogen-permeated STS 410 and 410L Martensitic Stainless Steels (질소침투 열처리한 STS 410 및 410L 마르텐사이트계 스테인리스강의 템퍼링에 의한 조직변화)

  • Lee, Hea Joeng;Kong, Jung Hyun;Lee, Hae Woo;Yu, Dea Kyung;Kang, Chang Yong;Sung, Jang Hyun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.20 no.2
    • /
    • pp.84-93
    • /
    • 2007
  • Microstructural changes during tempering at the temperature range of $300^{\circ}C{\sim}700^{\circ}C$ for the nitrogen-permeated STS 410 and 410L martensitic stainless steels has been investigated. After nitrogen permeation at temperature between 1050 and $1150^{\circ}C$, the surface layer appeared fine $Cr_2N$ of square and rod types in the martensite matrices. Hardness of the nitrogen-permeated surface layer represented 680Hv and 625Hv, respectively, for 410 and 410L steels. It is considered that the fine homogeneously dispersive effect of precipitates by nitrogen caused the increased hardness. Due to the counter current effect of carbon from interior to surface during nitrogen diffusion from surface to interior, the 0.1%C alloyed 410 steel showed the low nitrogen content of 0.025% compared with 0.045% of 410L steel at the distance of $100{\mu}m$ from the surface. Tempering of nitrogen-alloyed 410 and 410L showed the maximum hardness at $450^{\circ}C$. This maximum hardness was considered to be the secondary hardening effect of very fine carbide and nitride. The decrease in hardness at $700^{\circ}C$ was the softening effect of the matrix due to the precipitation of many needle-shaped $Cr_2N$ for 410 steel and the precipitation of coarse nitride of $Cr_2N$ in line with the spherical precipitates with directionality for 410L steel. For 410 steel, the corrosion resistance of nitrogen permeated surface in the solution of 1 N $H_2SO_4$ were nearly unchanged, however the superior corrosion resistance was obtained for nitrogen permeated 410L steel compared to the solution annealed condition.

Soil Physical and Chemical Properties of Forest-Fired Area in Koseong, Kangwon (강원도 고성 산화지역의 토양 이화학성 변화)

  • Nam, Yi;Min, Ell-Sik;Jang, In-Soo
    • Korean Journal of Environment and Ecology
    • /
    • v.14 no.1
    • /
    • pp.38-45
    • /
    • 2000
  • This research has been done to investigate influence of soil physical and chemical properties on forest environmental change by fired pine forest in Koseong, Kangwondo. The sample sites were divided by not-fired sites(NF), not-cutting site after fired(FNC), cutting and planting sites after fired(FCP) and cutting and not-planting sites after fired(FC). Soil texture of whole sites was sandy clay loam. Sand content of NF top soil were lower than those of sub soil and clay content were higher, while FNC, FCP and FC sand content of top soil were higher than those of sub soil. Total porosity didn't differ between the sites. Coarse porosity and permeability had the increasing order as NF> FNC> FCP> FC, but fine porosity and bulk density had the opposite trends. Because forest fire removed the vegetation and then soil erosion was accelerated, forest environmental changes by forest fire greatly degraded soil porosity and permeability which were indices for forest water retention, so that soil physical properties were deteriorated. Both top and sub soil pHs of NF and FNC were higher than those of FCP and FC. Organic matter content and total nitrogen content of top and sub soils were high in order as NF> FNC> FCP> FC. Cation exchange capacities and exchangeable cation(K+, Na+, $Ca^2$+, $Mg^2$+) content in top soils were higher than those in sub soils, and in order as NF> FNC> FCP> FC, to be compared by the sites. Those mean that forest fire result from the erosion of top soil layers.

  • PDF