• Title/Summary/Keyword: coarse-to-fine content

Search Result 191, Processing Time 0.044 seconds

Physicochemical Characteristic of Korean Wheat Semolina (우리밀 Semolina의 이화학적 특성)

  • Kim, Yeon-Ju;Kim, Rae-Young;Park, Jae-Hee;Ju, Jong-Chan;Kim, Won-Tae;Chun, Soon-Sil
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.6
    • /
    • pp.837-842
    • /
    • 2010
  • The physicochemical properties of coarse semolina (CS), medium semolina (MS) and fine semolina (FS) were investigated to research method applied in noodles processing of Korean wheat semolina. Large particle (>250 ${\mu}m$) was over 75% in all semolinas, except for FS, and the particle distribution of MS and durum semolina (DS) was similar. Crude protein and crude ash were the highest in DS followed by CS>MS>FS. Crude lipid of DS was the lowest among samples and CS, MS and FS were not significantly different. L value was high in semolina with small particle distribution and starch damage was the lowest in DS followed by FS>MS. Amylose content was high in DS (29.80%) and FS (29.08%) with small particle distribution. Water binding capacity was the highest in DS, and FS showed the highest water binding capacity among Korean wheat samples. Solubility and swelling power were noticeably high in FS with low starch damage and small particle distribution. In scanning electron microscope (SEM), FS and MS showed distribution of separated fine particles of flours. From these results, the physicochemical properties of semolina showed many differences by grinding methods. FS should be applied in noodles processing through additional examination about characteristic of noodle making.

Relation Between Water Content Ratio and Fire Performance of Class 1 Structural Light Weight Aggregate Concrete (1종 경량골재콘크리트의 함수율과 내화특성)

  • Song, Hun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.4
    • /
    • pp.321-327
    • /
    • 2014
  • Structural light weight aggregate concrete are made with both coarse and fine light weight aggregates, but it is common with the high strength concrete to replace all or part with normal weight sand be called class 1 structural light weight aggregate concrete. Fire resistance of structural light weight aggregate concrete are determined by properties of high water content ratio and explosive spalling. Especially, structural light weight aggregate concrete is occurred serious fire performance deterioration by explosive spalling stem from thermal stress and water vapor pressure. This study is concerned with experimentally investigating fire resistance of class 1 structural light weight concrete. From the test result, class 1 structural light weight concrete is happened explosive spalling. The decrease of cross section caused by explosive spalling made sharp increasing gradient of inner temperature.

A Study on the Mechanical Properties of Mortar Using Steen Slag Fine Aggregate (제강슬래그 잔골재 사용 모르타르의 역학적 특성에 대한 고찰)

  • 문한영;유정훈;박영훈;강정용;정문철;송준혁
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.322-325
    • /
    • 2003
  • Recently, as quality river aggregates like sands and gravels become scarce, use of crushed stones and sands, seashore sands, and seashore gravels is increasing abruptly. And, aggregates recycled from slags and waste concretes are used. However, since the converter slag easily expands and breaks due to free lime, differently from the blast-furnace slag, it is not suitable for use as concrete aggregates. Since the atomized steel slag aggregate has slippery surface and spherical shape, the mortar flowing characteristics improved as the atomized steel slag content increases, without regard to the aggregates coarseness and water/cement ratio. The flow characteristics loss rate of the mortar manufactured from steel slag aggregates was similar to that of the mortar manufactured from washed sand only. The compact strength of the mortar manufactured from coarse PS Ball were larger than that manufactured from washing sand only.

  • PDF

Image Retrieval Using the Color Feature and the Wavelet-Based Feature (색상특징과 웨이블렛 기반의 특징을 이용한 영상 검색)

  • 박종현;박순영;조완현
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.487-490
    • /
    • 1999
  • In this paper we propose an efficient content-based image retrieval method using the color and wavelet based features. The color features are extracted from color histograms of the global image and the wavelet based features are extracted from the invariant moments of the high-pass band image through the spatial-frequency analysis of the wavelet transform. The proposed algorithm, called color and wavelet features based query(CWBQ), is composed of two-step query operations for efficient image retrieval: the coarse level filtering operation and the fine level matching operation. In the first filtering operation, the color histogram feature is used to filter out the dissimilar images quickly from a large image database. The second matching operation applies the wavelet based feature to the retained set of images to retrieve all relevant images successfully. The experimental results show that the proposed algorithm yields more improved retrieval accuracy with computationally efficiency than the previous methods.

  • PDF

Trace metals in Chun-su Bay sediments (천수만 퇴적물에서 미량금속의 지화학적 특성)

  • Song, Yun-Ho;Choi, Man-Sik;Ahn, Yun-Woo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.16 no.4
    • /
    • pp.169-179
    • /
    • 2011
  • To investigate the controlling factor and accumulation of trace metal concentrations in Chun-su Bay sediments, grain-size, specific surface area, organic carbon content, calcium carbonate content, and concentration of Al, Fe, Na, K, Mg, Ca, Ti, Mn, P, S, Ba, Sr, Li, Co, Cr, Ni, Cu, Zn, As, Cd, Cs, Sc, V, Sn were analyzed. Controlling factors of metals were quartz-dilution, calcium carbonate and coarse sand or K-feldspar. Although the distribution of V, Co, Cr, Ni, Cu, Zn, Sn, and Cd concentration was explained by grain-size effiect, Mn and As showed the similar importance of grain-size effect and coarse sand or K-feldspar factors. By virtue of enrichment factor and 1 M HCl experiment, there were little enrichment in all the trace metals in bay sediments, which were explained well by geochemical properties of sediments. Since the concentration levels of As in coarse sand were high as much as those in fine-grained sediments and it was combined with Mn oxide (1 M HCl leached) and K-feldspar (residual), it was suggested that when the enrichment of As in sediments would be assessed, it is necessary to separate the coarse sand from bulk sediments or to use only sediments with higher than 10% in < $16{\mu}m$ fraction.

PWHT Cracking Susceptibility in the Weld Heat-Affected Zone of Reduced Activation Ferritic/Martensitic Steels (핵융합로 구조용 저방사화강의 용접열영향부 후열처리 균열 감수성)

  • Lee, Jinjong;Moon, Joonoh;Lee, Chang-Hoon;Park, Jun-Young;LEE, Tae-Ho;Hong, Hyun-Uk;Cho, Kyung-Mox
    • Journal of Welding and Joining
    • /
    • v.34 no.6
    • /
    • pp.47-54
    • /
    • 2016
  • Post-Weld Heat Treatment (PWHT) cracking susceptibility in the weld heat-affected zone (HAZ) of reduced activation ferritic-martensitic (RAFM) steels was evaluated through stress-rupture tests. 9Cr-1W based alloys including different C, Ta and Ti content were prepared. The coarse grained heat-affected zone (CGHAZ) samples were simulated with welding condition of 30 kJ/cm heat input. CGHAZ samples consisted of martensite matrix. Stress rupture experiments were carried out using a Gleeble simulator at temperatures of $650-750^{\circ}C$ and at stress levels of 125-550 MPa, corresponding to PWHT condition. The results revealed that PWHT cracking resistance was improved by Ti addition, i.e., Ti contributed to the formation of fine and stable MX precipitates and suppression of coarse M23C6 carbides, resulting in improvement of stress rupture ductility. Meanwhile, rupture strength increased with increasing solute C content.

Seedling Production and Soil Physico-Chemical Components of Nursery Field in Ginseng Plantations (농가포장(農家圃場)에서의 묘삼수량(苗蔘收量) 및 상토특성(床土特性))

  • Lee, Jong-Chul;Byen, Jeung-Su;Ahn, Dai-Jin;Kim, Kap-Sik;Park, Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.19 no.1
    • /
    • pp.50-55
    • /
    • 1986
  • To get the basic information about ginseng seedling production, yields of ginseng seedling and soil physico-chemical components in 32 fields of Yang-Jik and 19 fields of Ban-Yang-Jik nursery were investigated. Germination rate is $78.5{\pm}3.0%$, $77.8{\pm}2.8%$ in Yang-Jik and Ban-Yang-Jik. Rate of number of mature seedlings to number of seeds planted is $62{\pm}13.5%$, $53{\pm}12.6%$ in Yang-Jik and Ban-Yang-Jik. Rate of number of available seedlings to number of seeds planted (Rate of available seedling) is $42{\pm}12.5%$, $26{\pm}12.1%$ in Yang-Jik and Ban-Yang-Jik. The number of available seedlings per Kan (Kan means $180{\times}90cm$ area) is $627{\pm}187$, $368{\pm}182$ in Yang-Jik and Ban-Yang-Jik. Rate of number of unusable seedlings to number of mature seedlings is 34%, 51% in Yang-Jik and Ban-Yang-Jik. It showed the negative correlation between amount of coarse sand and stem height, and central leaf length, on the other hand, possitive correlation between amount of extremely fine sand, and stem height, and central leaf length respectively. Rate of available seedling was positively correlated with amount of medium, fine and extremely fine sand, whereas negatively correlated with amount of coarse sand in Yang-Jik. Root weight per seedling was positively correlated with amount of medium, fine and extremely fine sand. Contents of organic matter, available phosphate and potassium in Ban-Yang-Jik were higher than those of Yang-Jik, but content of lime was higher in Yang-Jik compared to that of Ban-Yang-Jik. Possitive correlations were showed between leaf area per seedling and content of organic matter, and between stem height and content of lime in Yang-Jik. Root weight per seedling was positively correlated with content of organic matter and magnesium in Ban-Yang-Jik, but there is no correlation between any of soil chemical components and root weight in Yang-Jik.

  • PDF

Analysis of Fundamental Properties and Durability of Concrete Using Coal Gasification Slag as a Combined Aggregate (석탄가스화 용융슬래그를 혼합잔골재로 사용한 콘크리트의 기초적 특성 및 내구성 분석)

  • Choi, Il-Kyung;Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.4
    • /
    • pp.331-338
    • /
    • 2020
  • The aim of the research is to evaluate the possibility of using coal gasification slag (CGS) as a combined aggregate for concrete mixture. To achieve this goal, the fundamental properties and the durability of concrete were analyzed depending on various combining ratio of CGS into both fine aggregate with favorable gradation and relatively coarse particles. According to the results of the experiment, slump and slump flow were increased with content of CGS regardless of crushed fine aggregate with good and poor gradations while the air content was decreased. For the compressive strength of the concrete, in the case of using the crushed aggregate with good gradation, increasing CGS content decreased compressive strength of the concrete, while when the concrete used crushed aggregate with poor gradation, the compressive strength was the maximum at 50% of CGS content. As a durability assessment, drying shrinkage was decreased and carbonation resistance was improved by increasing CGS content. On the other hand, for freeze-thawing resistance, CGS influenced adverse effect on freeze-thawing resistance. Therefore, it is known that an additional air entrainer is needed to increase the freeze-thawing resistance when CGS was used as a combined aggregate for concrete.

Laboratory evaluation of roller compacted concrete containing RAP

  • Ahmadi, Amin;Gogheri, Mohammad K.;Adresi, Mostafa;Amoosoltani, Ershad
    • Advances in concrete construction
    • /
    • v.10 no.6
    • /
    • pp.489-498
    • /
    • 2020
  • This paper investigates mechanical properties of roller compacted concrete (RCC) involving reclaimed asphalt pavement (RAP). In this way, a set of 276 cylindrical RCC specimens were prepared with different RAP sizes (i.e., fine, coarse & total) at various ratios (i.e., 10%, 20%, and 40%). Results reveal that incorporation of RAP decreases unconfined compressive strength (UCS), modulus of elasticity (E), and indirect tensile (IDT) strength of RCC. For each RAP size, a regression model was used to maximize RAP content while satisfying the UCS lower limit (27.6 Mpa) mentioned by ACI as a minimum requirement for RCC used in pavement construction. Moreover, UCS of RAP incorporated mixes, dissimilar to that of control mixes, was found to be sensitive and insensitive to the testing temperature and curing time after 7 days, respectively. The results also demonstrate that the higher amounts of RAP, the more flexibility in RCC is. This issue was also proved by the results of modulus of elasticity test. In addition, the toughness index (TI) shows that increase in RAP content leads to up to 43% increase in energy absorbance capacity of RCC.

The Characteristics on Infiltration of Fine-Grained Soil into Various Materials for Ground Drainage (지반 배수재에 따른 세립토의 관입특성)

  • Koh, Yongil
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.11
    • /
    • pp.39-43
    • /
    • 2015
  • In this study, the infiltration quantity of fine-grained soil into coarse-grained soil or aggregate for methods to accelerate consolidation drainage is checked by laboratory tests under various conditions and those characteristics on infiltration are examined closely. Irrespectively of pressures to fine-grained soil corresponding to stresses in a soil mass or moisture contents of fine-grained soil, fine-grained soil does not infiltrate into standard sand and marine sand, so it is verified that drain-resistance into sand mass of drainage / pile does not occur entirely and its shear strength would increase highly by water compaction. It is known that the infiltration depth of fine-grained soil into aggregate increases according that those size is larger in case of aggregates and it increases according that the pressure or the moisture contents is higher in case of same size aggregate. It is thought that drain-resistance into aggregate mass of drainage / pile would occurs by infiltrated fine-grained soil in advance though the infiltration depth of fine-grained soi of lower moisture content than liquid limit into 13 mm aggregate is low quietly. So gravel drain method or gravel compaction pile method, etc. using aggregate of gravels or crushed stones, etc. larger than sand particle size should be not applied in very soft fine-grained soil mass of higher natural moisture contents than liquid limit, and it is thought that its applying is not nearly efficient also in soft fine-grained soil mass of lower natural moisture contents than liquid limit.