• Title/Summary/Keyword: coal power plant

Search Result 534, Processing Time 0.028 seconds

Feasibility Evaluation & Strategy of Replacement of Power Generation Fuel by Using Bio-diesel (바이오 디젤의 발전용 연료화 타당성 평가)

  • Hur, Kwang-Beom;Park, Jung-Keuk;Rhim, Sang-Gyu;Lee, Jung-Bin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.806-812
    • /
    • 2009
  • Availability of reliable and affordable energy supply is a prerequisite for economic growth. Renewables are the third largest contributor to global electricity production after coal and natural gas and account for a share of 18%. Power generating capacity from renewables has increased to around 900GW by the year 2007. Today biodiesel fuels have been in commercial use in many countries and recently the world-wide biodiesel market has experienced considerable growth, which is partly due to various tax concession programs and other financial incentives. In Korea, biodiesel has already been used for transportation fuel, but not used for power generation fuel yet. Korean government has a strategy for renewable energy propagation, especially the goal of power generation amount by renewable energy is 3% of total power production by 2012. This paper focuses on the feasibility study for adaptability and strategy of using biodiesel as power generation fuel. The study also has the plan to replace the fuel of thermal power plant, gas turbine and distributed power system. As the increase of biodiesel fuel, I look forward to environment-friendly power generation and the strategy of Renewable Portfolio Standards(RPS).

  • PDF

Feasibility Evaluation & Strategy of Replacement of Power Generation Fuel by Using Bio-diesel (바이오 디젤의 발전용 연료화 타당성 및 추진전략)

  • Hur, Kwang-Beom;Park, Jung-Keuk;Rhim, Sang-Gyu;Kim, Sung-Chul
    • New & Renewable Energy
    • /
    • v.5 no.1
    • /
    • pp.32-39
    • /
    • 2009
  • Availability of reliable and affordable energy supply is a prerequisite for economic growth. Renewables are the third largest contributor to global electricity production after coal and natural gas and account for a share of 18%. Power generating capacity from renewables has increased to around 900GW by the year 2007. Today biodiesel fuels have been in commercial use in many countries and recently the world-wide biodiesel market has experienced considerable growth, which is partly due to various tax concession programs and other financial incentives. In Korea, biodiesel has already been used for transportation fuel, but not used for power generation fuel yet Korean government has a strategy for renewable energy propagation, especially the goal of power generation amount by renewable energy is 3% of total power production by 2012. This paper focuses on the feasibility study for adaptability and strategy of using biodiesel as power generation fuel. The study also has the plan to replace the fuel of thermal power plant, gas turbine and distributed power system. As the increase of biodiesel fuel, I look forward to environment-friendly power generation and the strategy of Renewable Portfolio Standards(RPS).

  • PDF

Application of Cathodic Protection on Metallic Structure in Extremely Acidic Fluids

  • Chang, H.Y.;Yoo, Y.R.;Jin, T.E.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.4 no.4
    • /
    • pp.140-146
    • /
    • 2005
  • Fossil fired power plant produces the electric energy by using a thermal energy by the combustion of fossil fuels as like oil, gas and coal. The exhausted flue gas by the combustion of oil etc. contains usually many contaminated species, and especially sulfur-content has been controlled strictly and then FGD (Flue Gas Desulfurization) facility should be installed in every fossil fired power plant. To minimize the content of contaminations in final exhaust gas, high corrosive environment including sulfuric acid (it was formed during the process which $SO_2$ gas combined with $Mg(OH)_2$ solution) can be formed in cooling zone of FGD facility and severe corrosion damage is reported in this zone. These conditions are formed when duct materials are immersed in fluid that flows on the duct floors or when exhausted gas is condensed into thin layered medium and contacts with materials of the duct walls and roofs. These environments make troublesome corrosion and air pollution problems that are occurred from the leakage of those ducts. The frequent shut down and repairing works of the FGD systems also demand costs and low efficiencies of those facilities. In general, high corrosion resistant materials have been used to solve this problem. However, corrosion problems have severely occurred in a cooling zone even though high corrosion resistant materials were used. In this work, a new technology has been proposed to solve the corrosion problem in the cooling zone of FGD facility. This electrochemical protection system contains cathodic protection method and protection by coating film, and remote monitoring-control system.

The Study on the Comparison of the ISCST3 Model and Receptor Model by Dispersion Tracing of Particulate Matter from Large Scale Pollution Sources (대단위배출원에서 기인한 입자상오염물질의 확산ㆍ추적을 통한 ISCST3모델과 수용모델의 비교연구)

  • 전상기;이성철;박경선
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.6
    • /
    • pp.789-803
    • /
    • 2003
  • The purpose of this study is to compare the usefulness between Gaussian dispersion model and receptor model with the experimental result of the dispersion tracing of the particulate pollutants from Taean coal-fired power plants. For this purpose, the component analysis of the collected PM 10 samples was performed. In order to trace the pollution sources, factor analysis was done with the result of the component analysis. As a result of the correlativity analysis of the fifteen power plants' profiles offered by US EPA, the correlativity of No.11202 source profile showed highest rate up to 84.5%. Thus it was adopted as proper one and the contribution rate by each pollution source was calculated by Chemical Mass Balance (CMB)-8 model. The contribution rate, which was the effect rate of the power plants on each measuring point, were calculated with a range of 24∼52% and the standard error was below 0.9 $\mu\textrm{g}$/㎥. This indicates the selection of the source profile was appropriate. Also, the concentrations of each point were calculated by the ISCST3 which is suggested by US EPA as one of the regulatory Gaussian dispersion model. The calculation result showed that the predicted concentration was 50∼58 $\mu\textrm{g}$/㎥, comparing with the measured result of 9∼65 $\mu\textrm{g}$/㎥. It was found that the concentration calculated by ISCST3 was underpredicted. It was thought that the receptor model was more favorable than the Gaussian dispersion model in estimating the effect of the particulate matter on a certain receptive point.

Variation of Liquid to Gas Ratio and Sulfur Oxide Emission Concentrations in Desulfurization Absorber with Coal-fired Thermal Power Plant Outputs (석탄화력 발전설비의 출력에 따른 탈황 흡수탑 액기비와 황산화물 배출농도 변화에 대한 연구)

  • Kim, Kee-Yeong;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.14 no.4
    • /
    • pp.39-47
    • /
    • 2018
  • In this research, when the output of the standard coal-fired thermal power plant operating continuously at the rated output of 500 MW is changed to operate at 300 to 500 MW, the amount of sulfur oxide produced and the amount of sulfur oxide in the absorption tower of desulfurization equipment and proposed an extra liquid to gas ratio improvement inversely proportional to the output. In order to calibrate the combustion efficiency at low power, the ratio of sulfur oxides relative to the amount of combustion gas is increased as the excess air ratio is increased. When the concentration of sulfur oxide at the inlet of the desulfurization absorber was changed from 300 to 500 ppm along with the output fluctuation. The liquid to gas ratio of limestone slurry and combustion gas was changed from 10.99 to 16.27. Therefore, if the concentration of sulfur oxides with output of 300 MW is x, The following correlation equation is recommended for the minimum required flow rate of slurry for the reduction of surplus energy due to the increase of the liquid weight at low load. $y1[m^3/sec]=0.11x+3.74$

  • PDF

Coal Ash Combustion Simulation for 500-MW Coal-firing Boiler (500MW급 화력발전 보일러의 석탄회 연소 시뮬레이션)

  • Hwang, Min-Young;Jeon, Chung-Hwan;Song, Ju-Hun;Kim, Gyu-Bo;Kim, Seung-Mo;Park, Myung-Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.9
    • /
    • pp.939-946
    • /
    • 2011
  • In thermal power generation companies, the recycling of refined ash (LOI < 6%) obtained from a PC-firing furnace is beneficial for the companies, e.g., it can be used for making lightweight aggregates. However, ash having a high LOI, which cannot be reused, is still buried in the ground. To obtain refined ash, the re-burning of high-LOI ash (LOI > 6%) in a PC-firing furnace can be an alternative. In this study, a numerical analysis was performed to demonstrate the effects of ash re-burning. An experimental constant value was decided by TGA (thermo-gravimetric analysis), and a DTF (drop-tube furnace) was used in the experiment for calculating the combustion of ash. On the basis of the trajectory of the moving particles of coal and ash, it was concluded that supplying ash near the burner, which is located high above the ground, is appropriate. On the basis of numerical results, it was concluded that an ash supply rate of 6 ton/h is suitable for combustion, without affecting the PC-firing boiler.

The Development of Optimal Soot Blowing System for Power Plant (발전용 최적 Soot Blowing 시스템 개발)

  • Kim, Sung-Ho;Jung, Hae-Won;Yook, Sim-Kyun
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.897-902
    • /
    • 2001
  • SBOS(Soot blower Optimum System) analyzes the accumulated fouling rate of a coal-fired boiler plant at short intervals, compares it with a reference data, and determines the optimal time of soot blowing. In this paper, ANFIS algorithm which is an optimal algorithm to detect variation of boiler performance with time, updating the reference data and to eliminate the effects of noise in field signal is used to clean heating surface and to reduce steam needed to blow the soot.

  • PDF

Strength and Earth Pressure Characteristics of Industrial Disposal Flowable Filling Materials Utilizing Backfiller (뒤채움재로 사용된 산업폐기물 유동화 처리토의 강도 및 토압특성)

  • Bang, Seongtaek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.3
    • /
    • pp.5-13
    • /
    • 2021
  • Due to population growth and industrial development, the amount of industrial waste is increasing every year. In particular, in a thermal power plant using finely divided coal, a large amount of coal ash is generated after combustion of the coal. Among them, fly ash is recycled as a raw material for cement production and concrete admixture, but about 20% is not utilized and is landfilled. Due to the continuous reclamation of such a large amount of coal ash, it is required to find a correct treatment and recycling plan for the coal ash due to problems of saturation of the landfill site and environmental damage such as soil and water pollution. In recent years, the use of a fluid embankment material that can exhibit an appropriate strength without requiring a compaction operation is increasing. The fluid embankment material is a stable treated soil formed by mixing solidifying materials such as water and cement with soil, which is the main material, and has high fluidity before hardening, so compaction work is not required. In addition, after hardening, it is used for backfilling or filling in places where compaction is difficult because higher strength and earth pressure reduction effect can be obtained compared to general soil. In this study, the possibility of use of fluidized soil using high water content cohesive soil and coal ash is considered. And it is intended to examine the flow characteristics, strength, and bearing capacity characteristics of the material, and to investigate the effect of reducing the earth pressure when applied to an underground burial.

A Generating Cost Evaluation of APR+ Standard Design (APR+ 표준설계 발전원가 분석)

  • Ha, Gag-Hyeon;Kim, Sung-Hwan;Lee, Jae-Ho
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.236-239
    • /
    • 2014
  • KHNP CRI has been developing APR+ nuclear power plant since 2007, which is GEN III+ model with 1500 MWe capacity. To develop safer and more economical nuclear power plant than APR1400, we investigated advanced design features of ALWR(advanced light water reactor) being constructed in Korea and being developed/constructed in foreign countries. We applied the advanced design features and lessons learned from Fukushima accident to develop APR+ standard design suitable for both domestic construction and overseas construction business. Three economic assessments have performed during standard design phase of APR+. The result of the 3th(final) economic analysis for APR+ standard design showed that APR+ N-th plant was about 23% more economical than coal-fired 1,000MW power plant.

Desirable pH of Slurry in the Desulfurization Absorber for a 200 MW Anthracite Power Plant (200 MW급 무연탄 발전용 탈황 흡수탑에서 적정 슬러리pH)

  • Choi, Hyun-Ho;Yoo, Hoseon
    • Plant Journal
    • /
    • v.16 no.1
    • /
    • pp.38-43
    • /
    • 2020
  • In this study, Seochon Thermal Power Plant No.1 for anthracite coal was tested to find the proper operation range of limestone slurry pH in the absorber tower which can be operated continuously in compliance with the Air Quality Preservation Act and Seocheon Thermal Power Division's internal regulation, sulfur dioxide average emission regulation. When operating the sulfur dioxide concentration [ppm] in the combustion gas flowing into the desulfurization absorption tower at 370, 400, 460 and 550 ppm while the main operating elements such as the flow rate of the combustion gas were fixed, the proper slurry pH Were 4.4, 4.5, 4.8 and 5.1, respectively. Therefore, it is recommended to operate with the correlation equation, RpH=0.004×Cin+2.93 derived using sulfur dioxide and the appropriate slurry pH.