• Title/Summary/Keyword: coal bottom ash

Search Result 158, Processing Time 0.024 seconds

Strength Development and Drying Shrinkage in Recycled Coal-Ash Building Material (석탄회를 재활용한 건설소재의 강도발현 및 건조수축)

  • Jo, Byung-Wan;Kim, Young-Jin;Park, Jong-Bin
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.5
    • /
    • pp.670-678
    • /
    • 2003
  • Recently, since industrial waste and life waste leaped into a pollution source, the building material used now a days is striking the limit. The purpose of this paper is to investigate an application of recycled coal ash using non-sintering method in the construction field. Accordingly, compressive strength, elastic modulus and drying shrinkage were experimentally studied for hardened coal ash using the non-sintering method. Also, Lineweaver and Burk method were applied to the regression analysis of drying shrinkage for the proposal equation. Elastic modulus, compressive strength of material become the basis properties of structural design. And these properties by age for hardened coal ash are important because of change by pozzolan reaction. This hardened coal ash is weak for tensile stress like that of concrete. And drying shrinkage is very important factor to make huge tensile force in early age. In the results, although some differences were shown when comparing coal ash with mortar or concrete, the application as a building material turned out to be possible if further researches were carried out. And the shrinkage characteristic of hardened coal-ash reveals to be similar to that of moderate heat cement.

A Study on the Admixture Stabilization of Domestic Coal Ashes as the Fill Material (성토재로서 석탄회의 안정제 혼합 효과에 관한 연구)

  • 박은영;김진만
    • Geotechnical Engineering
    • /
    • v.11 no.2
    • /
    • pp.37-50
    • /
    • 1995
  • Recently, the treatment of coal ashes produced from thermal electric power plants have been raised as a serious problem in according to the increasing of electric power demand in Korea. This paper deals with a re -use method of coal ash as a fill material. Two domestic coal ashes are mixed with cement and lime to improve the mechanical properties of coal ash. The mechanical properties such as compressive strength, compressive deformation, permeability and frost heaving property are investigated in according to the change of admixture rate, curing temperature and curing time. In this study, it is found coal ash (fly ash+bottom ash) and fly ash with 2%~3% cement can be used as a fill material, respectively. It is also found the frost heaving properties of coal ash is effectively improved by the mixture of 6%~9% cement.

  • PDF

Decision of Optimized Mix Design for Lightweight Foamed Concrete Using Bottom Ash by Statistical Procedure (통계적 방법에 의한 바텀애쉬를 사용한 경량기포 콘크리트의 최적배합 결정)

  • Kim, Jin-Man;Kwak, Eun-Gu;Cho, Sung-Hyun;Kang, Cheol
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.1
    • /
    • pp.3-11
    • /
    • 2009
  • The increased demand and consumption of coal has intensified problems associated with disposal of solid waste generated in utilization of coal. Major utilization of coal by-products has been in construction-related applications. Since fly ash accounts for the part of the production of utility waste, the majority of scientific investigations have focused on its utilization in a multitude of use, while little attention has been directed to the use of bottom ash. As a consequence of this neglect, a large amount of bottom ash has been stockpiled. However, the need to obtain safe and economical solution for its proper utilization has been more urgent. The study presented herein is designed to ascertain the performance characteristics of bottom ash, as autoclaved lightweight foamed concrete product. The laboratory test results indicated that tobermorite was generated when bottom ash was used as materials for hydro-thermal reaction. According to the analysis of variance, at the fresh state, water ratio affects on flow and slurry density of autoclaved lightweight foamed concrete, but foam ratio influences on slurry density, while, at the hardened state, foam ratio affects on the density of dry and the compressive strength but doesn't affect on flexural and tensile strength. In the results of response surface analysis, to obtain target performance, the most suitable mix condition for lightweight foamed concrete using bottom ash was water ratio of 70$\sim$80% and foaming ratio of 90$\sim$100%.

Characterization of Controlled Low Strength Materials Utilizing CO2-fixation Steel Slag and Power Plant Bottom Ash (CO2고정화한 제강슬래그와 발전소 바닥재를 활용한 저강도 고유동 채움재의 특성)

  • Cho, Yong-Kwang;Kim, Chun-Sik;Nam, Seong-Young;Cho, Sung-Hyun;Lee, Hyoung-Woo;Ahn, Ji-Whan
    • Journal of Energy Engineering
    • /
    • v.27 no.2
    • /
    • pp.55-60
    • /
    • 2018
  • In this study investigated the Controlled Low Strength Materials using coal ash and steel slag(KR slag) as the main material in the thermal power plant classified as waste resource. Bottom ash and KR slag are mixed at a ratio of 7: 3 to expand the use of industrial by-products through carbonate($CO_2$-fixation) reactions and inhibit the exudation of heavy metals. The results showed that the water content increased as the content of bottom ash increased. It was confirmed that as the powder content increased, the bleeding ratio decreased. Also, as the content of one kind of ordinary portland cement (OPC) decreased, activation of hydration reaction decreased and compressive strength decreased. However, when the mixed composition is appropriately adjusted, the compressive strength of 2.0 MPa required for the controlled low-strength material can be satisfied.

Effects of Soil-Amended Bottom Ash on Decomposition Rates of Organic Matter as Investigated by an Enforced-Aeration Respirometer (호기순환 호흡계를 이용한 토양처리 석탄바닥재의 유기물 분해에 미치는 영향)

  • Jung, Seok-Ho;Chung, Doug-Young;Han, Gwang-Hyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.2
    • /
    • pp.253-259
    • /
    • 2012
  • Disposal of high amount of coal combustion by-products, such as fly ash and bottom ash, is of a great concern to the country, due to the huge treatment cost and land requirement. On the other hand, those coal-ash wastes are considered to have desirable characteristics that may improve physical, chemical, and biological properties of soils. Especially, compared with fly ash, bottom ash has a larger particle size, porous surface area, and usable amount of micronutrients. In the present study, we examined bottom as a soil amendment for mitigating $CO_2$ emission and enhancing carbon sequestration in soils fertilized with organic matter (hairy vetch, green barely, and oil cake fertilizer). Through laboratory incubation, $CO_2$ released from the soil was quantitatively and periodically monitored with an enforced-aeration and high-temperature respirometer. We observed that amendment of bottom ash led to a marked reduction in $CO_2$ emission rate and cumulative amount of $CO_2$ released, which was generally proportional to the amount of bottom ash applied. We also found that the temporal patterns of $CO_2$ emission and C sequestration effects were partially dependent on the relative of proportion labile carbon and C/N ratio of the organic matter. Our results strongly suggest that amendment of bottom ash has potential benefits for fixing labile carbon as more stable soil organic matter, unless the bottom ash contains toxic levels of heavy metals or other contaminants.

Evaluation on the Effect of Coal-ash as Landfill Cover Material of Mono-Layer Cover System through the Field Scale Test (현장 실험을 통한 단층형 매립복토시스템의 복토재로서 석탄회의 효과 검토)

  • Yun, Sung-Wook;Kang, Sin-Il;Jin, Hae-Geun;Kim, Pil-Joo;Kim, Soon-Oh;Yu, Chan
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.7
    • /
    • pp.81-91
    • /
    • 2010
  • In order to investigate the applicability and suitability of the coal ash (bottom ash) to landfill final cover, field pilot-scale lysimeter experiments were carried out. The mixture of loamy soil, bottom ash, and construction waste was placed as a cover material in lysimeter ($2m{\times}6m{\times}1.2m$) which were constructed with cement brick, and then volumetric water contents, pF value, and the quantity of runoff and seepage of treatment boxes filled with the mixture of loamy soil and the industrial by-products were monitored from July, 2007 to february, 2008. Among the cases tested, consequently, the case containing the mixture of bottom ash and loamy soil was most effective in plant growth and water retention ability.

An Experimental Study on the Engineering Properties of Concrete according to W/C and Replacement Ratio of Bottom Ash (물-시멘트비 및 바텀애쉬 대체율에 따른 콘크리트의 공학적 특성에 관한 실험적 연구)

  • Choi, Se-Jin;Jeong, Yong;Oh, Bok-Jin;Kim, Moo-Han
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.840-847
    • /
    • 2003
  • Recently, the coal-ash production has been increased by increase of consumption of electric power. So it is important to secure a reclaimed land and treatment utility for coal-ash. This is an experimental study to compare and analyze the engineering properties of concrete according to W/C and replacement ratio of bottom ash. For this purpose, the mix proportions of concrete according to W/C(40, 50, 60%) and replacement ratio of bottom ash(0, 10, 20, 35, 50%) were established, and then tested for slump, chloride content, setting time, bleeding content, compressive strength. Also the durability test of concrete with W/E 60% was performed. According to test results, it was found that the bleeding content of concrete decreased as the replacement ratio of bottom ash increased. And the chloride content of concrete using the bottom ash increased as the replacement ratio of bottom ash increased, but it is satisfied with the chloride content of fresh concrete $0.30kg/m^3$ below("concrete standard specification" regulation value). The compressive strength of concrete using the bottom ash was similar to that of BA0 concrete after 28 days of curing and the carbonation depth of concrete was increased according to increase of the replacement ratio of bottom ash.

A Study on the Model Test for Mine Filling Using Coal Ash (석탄회를 이용한 갱내충전모형시험 연구)

  • Lee, Sang-Eun;Park, Se-Jun;Kim, Hak-Sung;Jang, Hang-Suk;Kim, Tae-Heok
    • Tunnel and Underground Space
    • /
    • v.22 no.6
    • /
    • pp.449-461
    • /
    • 2012
  • Coal ash generated from thermal power plants is planned to use for mine filling in order to prevent subsidence of the ground. In according, the basic physical properties and flow characteristics were grasped using coal ash from generated Yeongdong thermal power plant, and hydraulic filling experiments were performed a total of eight times by manufacturing the model of 1 inclined shaft in Hanbo coal mine. The specific gravity of coal ash is 2.34, and the result of particle size analysis belongs to silty sand (SM). Coal ash of weight ratio of 60% was used in the filling experiments of the model, since liquefaction have shown in coal ash less than weight ratio of 70% from the result of slump and flow test. The outlet should be located at the bottom of the inclined and vertical shaft, this was favorable way in improving the filling efficiency from the experiment results regardless of groundwater exists.

Coal Bottom Ash Application on Park Site Soil and Its Impacts on Turfgrass Growth and Soil Quality

  • Oh, Se Jin;Kim, Yong Hyok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.2
    • /
    • pp.127-134
    • /
    • 2017
  • Bottom ash (BA) has different macro- and micronutrients such as B, Mo, Fe, Ca, and Mg, providing useful resources for plant growth and soil quality. The objective of this study was to evaluate the applicability of artificial top-soil treated with BA in park area as a vegetation base material, especially for turfgrass growth. Collected BA was mixed with peat moss and clay at the ratio of 70:10:20 (w/w). In order to evaluate the park quality and turfgrass growth in park area, the artificial soil was applied with BA along with the control or without BA. Result showed that exchangeable K and P were increased by $11.4mg\;kg^{-1}$ and $163mg\;kg^{-1}$, respectively, compared to the control soil when the artificial soil was treated with BA. Microbial population and enzyme activity (Acid-phosphatase, APA) in artificial soil having BA also increased as 2 times and 10%, respectively, compared to the control soil. Comparing turfgrass growth and yield between general soil and artificial soil, about 2 times higher plant yield (fresh weight) was observed as artificial soil was applied comparing to general soil. Furthermore, nutrient concentration in turfgrass was averaged as 0.440% for $P_2O_5$, 0.456% for CaO, 1.198% for $K_2O$ and 0.188% for MgO that all values are higher than general soil (0.323% for $P_2O_5$, 0.416% for CaO, 0.610% for $K_2O$ and 0.173% for MgO). Application of BA can be useful for vegetation base material in park site.

Studies on Engneering Properties of Coal Ash Obtained as Industrial Wastes (산업폐기물(産業廢棄物)로 발생(發生)되는 석탄회(石炭灰)의 토질력학적(土質力學的) 특성(特性)에 관한 연구(硏究))

  • Chun, Byung Sik;Koh, Yong Il;Oh, Min Yeoul;Kwon, Hyung Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.1
    • /
    • pp.115-123
    • /
    • 1990
  • The purpose of this study was to examine the uses of coal ash as a type of construction material. The methods of examination were chemical anlysis, soil laboratory test and the soil vibration test. Materials used were coal ash obtained as a by-product from 5 thermal power plants in Yongdong, Yongwol, Sochon(anthracite coal) and in Samchonpo and Honam (bituminous coal). Over 70% of the coal ash consisted of silica and alumina. The fly ash grain size showed a uniform distribution from fine-sand to silt, and that of the bottom ash showed from sand to gravel. The specific gravity and density of the coal ash were low. The long term strength increased gradually due to the self-setting property resulting from pozzolanic activity. The shear strength was higher than that of general soil. Cohesion and optimum moisture content of anthracite coal ash were higher than bituminous coal ash, whereas the maximum dry density was higher in bituminous coal ash. The coal ash dynamic Young's modulous curve range was similar to that of general soil. Of the results from the soil vibration test by car-running, the size relative acceleration level in the ash pond was higher than that of natural ground, but the damping ratio was lower than that of natural ground near the ash pond. The coal ash has more advantageous engineering properties than general soil with particles of the same size. For example, the California Bearing Ratio of the bottom ash at both Yongdong and Yongwol was 77~137%. Therefore we expect that if further study is done, coal ash can be used as a construction material when reclaiming seashore, construction embankments, road construction, making right-weight aggregate, or as a general construction material.

  • PDF