• Title/Summary/Keyword: coal bearing shale

Search Result 12, Processing Time 0.027 seconds

The Research on the Exploitation and Utilitization of Chiastolite bearing shale in the Coal bearing strata (함탄층(含炭層) 내의 chiastolite-shale의 개발(開發) 이용(利用)에 관(關)한 연구(硏究))

  • Kim, Ok Joon;Kim, Kyu Han
    • Economic and Environmental Geology
    • /
    • v.8 no.3
    • /
    • pp.135-146
    • /
    • 1975
  • The chiastolite bearing shale was known to occur in various coal fields in South Korea among which the Kangneung coal fields is the most outstanding in quality and quantity of chiastolite. The chiastolite occurs mostly in black shales of Sadong formation and little in shales of Hongjom and Kobangsan formations, and is most abundant in the footwall coaly shales of the Sadong coal seams. The chiastolite has been proved to be thermal contact product of the high aluminous shale that comes into contact with Kangneung granite. The distribution of chiastolite in the Kangneung coal field is irregular. The eastern part of the region contains more chiastolite than that of western part. It is believed that the difference of the grade is due to the intensity of metamorphism. The grade of chiastolite in the shale varies from few percent up to as high as 60 % in volume, and the minable reserve of the chiastolite is estimated about 4,700,000 tons. This reserves is rather concentrated in few localities such as in Jiam Mine, Jungrim Mine, Sir 1 Hang in the Whasung Mine, the second and third sections of Kangneung Mine and Umbuelri district. The chemical composition of chiastolite bearing coaly shale is $SiO_2$, 35.0%; $Al_2O_3$, 27.0%; $Fe_2O_3$, 0.29%.

  • PDF

Pollution by Acid Mine Drainages from the Daeseong Coal Mine in Keumsan (금산(錦山) 대성탄철지성(大成炭鐵地城) 산성폐수(酸性廢水)에 의한 오염(汚染))

  • Song, Suckhwan;Min, Ell Sik;Kim, Myung Hee;Lee, Hyun Koo
    • Economic and Environmental Geology
    • /
    • v.30 no.2
    • /
    • pp.105-116
    • /
    • 1997
  • This study is for extent of polluted area by acid mine drainage from the Daeseong coal mine, Keumsan. Black shales of the Changri Formation containing the Daeseong coal mine are geochemically similar to those from the North America as well as Europe. Comparing with geochemical compositions and relative ratios, coal bearing and non-coal bearing soils are similar to the stream sediments influenced and not influnced by the acid mine drainage, respectively. These characteristics suggest that acidification of the soils and of the stream sediments are related to the the coal bearing black shale. Soil waters beneath the coal bearing soil have low pH and high cation contents than those beneath non-coal bearing soil, suggestive of extractions of cations with increasing oxidizations within the soils. Surface waters show that those influenced by the acid mine drainage are low pH, and have high $SO_4{^{2-}}$, $Mg^{2+}$, $Fe^{2+}$, Mn and slightly lower DO, suggesting that heavy pollutions have been progressed in these area. Geochemical comparisons between the polluted surface water and adjacent black shales suggest that pollutions of the surface water are related to the black shales.

  • PDF

Characterization of Humic Acids from Kuye San Soil

  • Hichung Moon;Me Hae Lee;Tae Hyun Yoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.2
    • /
    • pp.153-156
    • /
    • 1991
  • Three humic acids, two from uranium bearing coal shale and one from the neighbouring limey shale region, are extracted from soils by dissolution in 0.1 M NaOH followed by acid precipitation. After purification cycles, they are characterized for their elemental composition, contents of inorganic impurities, molecular size distribution and proton exchange capacities. The results are compared with the data of reference and aquatic humic acids characterized under the project MIRAGE Ⅱ at TUM and also with other literature data. The proton exchange capacity determined by direct titration, is found to be 3.60 and 2.01 meq/g for coal shale and limey shale humic acids, respectively.

Geochemical Correlations Between Uranium and Other Components in U-bearing Formations of Ogcheon Belt (옥천대(沃川帶) 함(含)우라늄지층중(地層中)의 우라늄과 타성분(他成分)과의 상관관계(相關關係))

  • Lee, Min Sung;Chon, Hyo Taek
    • Economic and Environmental Geology
    • /
    • v.13 no.4
    • /
    • pp.241-246
    • /
    • 1980
  • Some components in uranium-bearing formations which consist mainly of black shale, slate. and low grade coal-bearing formation of Ogcheon Belt were processed statistically in order to find out the geochemical correlations with uranium. Geochemical enrichment of uranium, vanadium and molybdenum in low grade coal-bearing formations and surrounding rocks is remarkable in the studied area. Geochemical correlation coefficient of uranium and molybdenum in the rocks displays about 0.6, and that of uranium and fixed carbon about 0.4. Uranium and vanadium in uranium-bearing low grade coals denote very high correlation with fixed carbon, which is considered to be responsible for enrichment of metallic elements, especially molybdenum. Close geochemical correlation of uranium-molybdenum couple in the rocks can be applied as a competent exploration guide to low grade uranium deposits of this area.

  • PDF

Evaluation of Heavy Metal Contents in the Floras Derived from Granite and Coal Bearing Shale Areas in Keumsan (금산의 화강암 및 함탄질 셰일 지역 토양내 식물체의 중금속 함량 특성)

  • Song Suck-hwan;Kang Young-Rib;Kim Il-Chool
    • Korean Journal of Plant Resources
    • /
    • v.18 no.2
    • /
    • pp.251-259
    • /
    • 2005
  • Three different floras(M. sinsinsis, A. vulgaris, Robinia pseudo-acacia) were collected from the granite(GR) and coal bearing shale area(CB) and analysed for their heavy metal elements with the representative soils. Regardless of the flora species, the CB were high in average contents. Among the correlation relationships, the CB were more distinctive than the GR, and the A. vulgaris showed higher correlations than the M. sinsinsis. In the same soils, the A. vutgaris showed high contents than the M. sinsinsis and Robinia pseudo-acacia, and the M. sinsinsis were high relative to the Robinia pseudo-acacia. In the comparisons of the flora, root parts were high in most of the elements except for Zn. In the soils, the CB were high in most of elements while As and Mo showed different contents between the GR and CB. In the comparison between soil and flora, soils of the GR were high in the V and Sc contents and low in Zn and Cu, while those of the CR were high in the Cr, V and Sc contents, and low in the Zn contents, Comparing with the soil contents, the M, sinsinsis in the GR were similar to Co and V contents while, in the CB, the M. sinsinsis were similar to the Ni, Cr, Co, Zn, Mo contents, and the Robinia pseudo-acacia were similar to the Ni, Zn, Cu contents. Overall results suggested that the M. sinsinsis and A. vulgaris should be eligible for the bioremediation of the soils polluted by heavy metal such as the CB.

금산지역 토양별 화학적 특성과 주요 용존성분

  • 송석환;이용규
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.195-199
    • /
    • 2002
  • This study is for know chemistry of the representative soils from Keumsan, its relationships with dissolved compositions, and its absorption relationships within the flora. It has been done for two comparisons: 1) phyllite, shale and granite(PSG), and 2) granite and coal bearing shale(GC). Among the soil leachate of the PSG, cations are mainly low in the phyllite area while anions are mainly low in the granite area. In the soil compositions, Ca and Mg of the beans are high and Na is high in the granite area while Ca and Na of the perilla are high in the granite area and Mg is high in the phyllite area. In th both species, Na for the granite area and Mg for the phyllite area are high while Ca for the shale area is low. Among the flora, shale area shows low Ca and Mg contents while granite area shows slightly high Na contents, regardless the species. Compared with beans, perilla is low in the Mg and high in the Na contents. These relationships show that the contents of the soil leachate do not reflect absorption within the flora. Among the soil leachate of the GC, shale area is high in the most of the elements. Especially, SO$_4$ is over 15 times high In the phyllite area. In the soil, granite area shows high Ca, Na and low Mg contents. In the flora, the Miscanthus sinensis shows high Ca and Mg contents in the granite area while the Artemisia vulgaris shows high Ca, Ca and Mg contents in the shale area. These relationships for contents of the flora and soil leachate suggest that the flora has a different absorption according different species.

  • PDF

Isotope Geochemistry of Uranium Ore Deposits in Okcheon Metamorphic Belt, South Korea (옥천변성대내(沃川變成帶內)에 분포(分布)하는 우라늄광상(鑛床)의 동위원소(同位元素) 지구화학적(地球化學的) 연구(硏究))

  • Kim, Kyu Han
    • Economic and Environmental Geology
    • /
    • v.19 no.spc
    • /
    • pp.163-173
    • /
    • 1986
  • Black and graphite slates from the Okcheon metamorphic belt contain enriched values of uranium (average 200~250ppm) and molybdenum (average 150~200ppm). Uranium mineralization is closely associated with quartz and sulfide veinlets which are formed diagenetically in graphite slate. The uranium minerals were concentrated in outer part of graphite nodules. The ${\delta}^{13}C$ values of organic carbon from the metasediments including uranium bearing graphite slate range from -15.2 to -26.1‰ with a mean of -23.5‰. Meanwhile, ${\delta}^{13}C$ values of coal and coaly shale from some Paleozoic coal fields of South Korea vary from -19.4 to -23.9‰ with an average of -22.5‰. Isotopic compositions of vein calcite in uranium bearing slate range from -13.4 to -15.4‰ in ${\delta}^{13}C$ and +11.3 to +15.1‰ in ${\delta}^{18}O$ could indicate a reduced organic carbon source isotopically exchanged with a graphite of biogenic origin. Metamorphic temperature determined by a calcite-graphite isotope geothermometer was 383~$433^{\circ}C$ which corresponded to greenschist facies by Miyashiro (1973) and is consistent with metamorphic facies estimated by mineral assemblages (Lee, et al., 1981, and Kim, 1971). The fixation of uranyl species by carbonaceous matter in marine epicontinental environment, and remobilization of organouranium by diagenetic processes have attributed to the enrichment of uranium and heavy metals in the graphite slate of Okcheon metamorphic belt.

  • PDF

Physio-Chemical Characteristics of Soil, Stream Sediment and Soil Water Contaminated by the Abandoned Coal Mine in Keumsan, Chungnam (충남(忠南) 금산(錦山) 폐탄광지역(廢炭鑛地域)의 토양(土壤), 하상퇴적물(河床堆積物) 및 토양수(土壤水)의 이화학적(理化學的) 특성(特性))

  • Min, Ell Sik;Kim, Myung Hee;Song, Suckhwan
    • Journal of Korean Society of Forest Science
    • /
    • v.86 no.3
    • /
    • pp.324-333
    • /
    • 1997
  • The research has been made for the effects of the pollution by the abandoned coal mine drainage on the physical and chemical properties of soil, stream sediment and soil water. The soils overspreaded by the abandoned coal don't develop solum and the bulk density is $1.83g/m^3$, compared with $1.14-1.38g/m^3$ in the other forest soils. The soil pH range in coal bearing region ie, from 4.01 to 4.11 and non-coal bearing soil range is from 5.03 to 5.13. Heavy metals such as As, Cr, Ni, Mo and Ba of coal bearing soils and polluted stream sediments have larger concentration than those of non-coal content and non-polluted. Especially As and Mo concentrations are largely high in coal bearing. The relative ratios $K_2O/Na_2O$ of geochemical elements are higher in coal bearing soil and polluted stream sediments than those of non-coal bearing soils and non-polluted stream sediments as well as black shales of the Changri Formation. However, $MgO+Fe_2O_3+TiO_2/CaO+K_2O$ are the opposite trends, so that the ratios are lower in the polluted regions. The soil water pHs in the polluted regions are the strong acid(pH3.4-4.2) and buffer capacity of the polluted soil is low because canons such as $Na^+$, $K^+$, $Mg^{+2}$are leached by the acidification.

  • PDF

Interpretation of Origin and Methanogenic Pathways of Coalbed Gases from the Asem-Asem Basin, Southeast Kalimantan, Indonesia (인도네시아 칼리만탄 남동측에 위치하는 아셈-아셈분지 석탄층 가스의 기원과 메탄생성경로 해석)

  • Chun, Jong-Hwa;Hwang, In Gul;Lee, Wonsuk;Lee, Taehun;Kim, Yuri
    • Economic and Environmental Geology
    • /
    • v.55 no.3
    • /
    • pp.261-271
    • /
    • 2022
  • Six gas samples were collected from coal and coaly shale from core AA-1, which was acquired from the Asem-Asem Basin, southeast Kalimantan, Indonesia. These coalbed gas samples were analyzed for the molecular composition, carbon isotope (δ13CCH4, δ13CC2, and δ13CCO2), hydrogen isotope (δDCH4), hydrocarbon index (CHC), and carbon dioxide-methane index (CDMI) to document their origin and methanogenic pathways. Core AA-1 successively consists of lower clastic sedimentary rocks (Sedimentary Unit-1, SU-1) containing coal and coaly shale, and upper limestone (Sedimentary Unit-2, SU-2), unconformably underlain by serpentinized basement interpreted as part of the Cretaceous Meratus subduction complex (MSC). The coal and coaly shale (SU-1) were deposited in a marshes nearby a small-scale river. Compositions of coalbed gases show that methane ranges from 87.35 to 95.29% and ethane ranges from 3.65 to 9.97%. Carbon isotope of coalbed methane (δ13CCH4) ranges from -60.3 to -58.8‰, while hydrogen isotope (δDCH4) ranges from -252.9 to -252.1‰. Carbon isotope of coalbed ethane (δ13CC2) ranges from -32.8 to -31.2‰, carbon isotope of coalbed carbon dioxide (δ13CCO2) ranges from -8.6 to -6.2‰. The coalbed CO2 is interpreted to be an abiogenic origin based on a combination of δ13CCO2 and CDMI and could have been transported from underlying CO2 bearing MSC through faults. The methanogenic pathways of coalbed gases are interpreted to have originated from primary methyl-type fermentation and mixed with CO2 reduction, affecting thermogenic non-marine coal-type gases based on analyses of isotopic ratios and various indexes.

Sandstone Diagenesis of the Lower Permian Jangseong Formation, Jangseong Area, Samcheog Coalfield (삼척탄전 장성일대에 분포하는 하부페름기 장성층 사암의 속성작용)

  • 박현미;유인창;김형식
    • The Journal of the Petrological Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.132-145
    • /
    • 1998
  • The coal-bearing siliciclastic rocks of the Lower Permian Jangseong Formation, Samcheog coalfield, represent a megacyclothem which shows cyclic repetitions of sandstone, shale, coaly shale, and coals. Petrographic, geochemical, and SEM studies for sandstone samples, and XRD analysis for clay minerals were carried out to understand diagenesis in the sandstones of the Jangseong Formation. The Jangseong sandstones are composed of 60% quartz (mainly monocrystalline quartz) and 36% clay matrix and cement with minor amounts of feldspar, lithic fragments and accessory minerals (less than 4%). Jangseong sandstones are classified mostly as quartzwackes and partly as lithic graywackes according to the scheme of Dott(1964). The textural relationships between authigenic minerals and cements in thin sections and SEM photomicrographs suggest the paragenetic sequence as follows; (1) mechanical compaction, (2) cementation by quartz overgrowth, (3) formation of authigenic clay minerals (illite, kaolinite), (4) dissolution of framework grains and development of secondary porosity, and (5) later-stage pore-filling by pyrophyllite. We propose that these diagenetic processes might be due to organic-inorganic interaction between the dominant framework grains and the formation water. The Al, Si ions and organic acid, derived from dewatering of interbedded organic-rich shale and coals, were transported into the Jangseong sandstones. This caused changes in the chemistry of the formation water of the sandstones, and resulted in overgrowth of quartz and precipitation of authigenic clay minerals of kaolinite and illite. The secondary pores, produced during dissolution of clay and framework grains by organic acid and $CO_2$ gas, were conduit for silica-rich solution into the Jangseong sandstones and the influx of silica-rich solution produced the late-stage pyrophyllite after the expanse of kaolinite. The origin of the solution that formed pyrophyllite is not likely to be the organic-rich formation water based on the observation of fracture-filling pyrophyllite in the Jangseong sandstones, but the process of pyrophyllite pore-filling was indirectly related to organic-inorganic interaction.

  • PDF