• 제목/요약/키워드: coagulation

검색결과 1,464건 처리시간 0.028초

Treatment of oily wastewater from cold-rolling mill through coagulation and integrated membrane processes

  • Cheng, Xue-Ni;Gong, Yan-Wen
    • Environmental Engineering Research
    • /
    • 제23권2호
    • /
    • pp.159-163
    • /
    • 2018
  • The feasibility of applying coagulation-integrated microfiltration (MF) as a pretreatment for an ultrafiltration (UF) feed in oily wastewater treatment was investigated. The effects of different coagulants on oil removal rates from wastewater were studied. The maximum oil removal rate of 82% was obtained after coagulation with 130 mg/L of polyaluminium chloride (PAC). UF flux reached $95L/(m^2{\cdot}h)$ with coagulation-integrated MF as pretreatment. This value was 2.5 times higher than that flux obtained without pretreatment. The value of UF flux increased as the transmembrane pressure (TMP) and cross-flow velocity (CFV) of the UF module increased. UF flux gradually increased when TMP and CFV exceeded 0.4 MPa and 3 m/s, respectively, because of concentration polarization and membrane fouling stabilization. Chemical oxygen demand reduction and oil removal rate reached 95.2% and 98.5%, respectively, during integrated membrane processing with a PAC concentration of 130 mg/L, TMP of 0.4 MPa, and CFV of 3 m/s for UF. In addition, sequentially cleaning the fouling membrane with NaOH and $HNO_3$ aqueous solutions caused UF flux to recover to 90%. These encouraging results suggested that the hybrid integrated membrane process-based coagulation and MF + UF are effective approaches for oily wastewater treatment.

알루미늄 응집제들에 의한 몇가지 유기화합물의 응집효과에 관한 연구 (A Study on the Coagulation Efficiencies of Some Organics by Aluminum Based Coagulants)

  • 김미향;김영만;최범석
    • 분석과학
    • /
    • 제12권6호
    • /
    • pp.478-483
    • /
    • 1999
  • Alum, PAC, PACS의 알루미늄 응집제에서 유기화합물의 응집효율을 조사하였다. pH에 따른 응집효율은 pH 6~7에서 가장 크며, 중성의 pH에서 응집효율은 PACS, PAC, alum의 순서로 감소하였다. 분자량이 큰 유기물은 모든 응집제에 대해 좋은 응집율을 보였으나 작은 분자들은 응집되지 않았다. 반면에 분자량이 작은 유기물 중에서 인접한 위치에 2개 이상의 COOH와 OH의 작용기를 가진 분자들은 10~80%의 응집효율을 보였다.

  • PDF

회수수가 응집공정의 오염물질 제거 및 입자특성에 미치는 영향 (Effects of Recycled Washwater on Pollutant Removal and Particle Characteristics during Coagulation)

  • 문병현;김승현;박미선;이향인;이강춘
    • 한국환경과학회지
    • /
    • 제11권9호
    • /
    • pp.955-960
    • /
    • 2002
  • The recycled washwater, which has different water quality and is produced about 5 to 20% of the total water volume treated, affects the unit operation of water treatment, especially coagulation process. However, the effects of recycled washwater on unit operation of water treatment have not been fully investigated. In this study, effects of recycled washwater on coagulation process were investigated to find the optimum coagulation condition by analyzing turbidity, $UV_{254}$, TOC removal efficiencies. In addition, effects of recycled washwater on residual Al after coagulation were studied by analyzing soluble and particulate Al. The size distribution and fractal dimension of coagulated also analyzed. The recycled washwater was lower pH than the raw water. And the recycled washwater had higher $UV_{254}$, TOC and residual Al concentration than the raw water. Residual Al concentration of recycled washwater was about 50 times higher than that of raw water. Optimum coagulant dosages on the blending recycled washwater and the raw water for turbidity, $UV_{254}$ and Al removal were lower than that on the raw water. However, TOC removal increased by increasing coagulant dosage. The size and fractal dimension of coagulated particle produced in the blending recycled washwater were larger, which imply faster settling velocity, than those produced in the raw water only.

하수처리수 재이용을 위한 막분리 공정시 응집조건에 따른 투과효율 변화에 관한 연구 (A Study on Flux Efficiency on Membrane for Water Reclamination according to Coagulations)

  • 정진희;장성호;최영익
    • 한국환경과학회지
    • /
    • 제20권6호
    • /
    • pp.767-773
    • /
    • 2011
  • The objectives of this research are to investigate the proper coagulation conditions which are a type and doses of coagulants, mixing conditions (velocity gradients and mixing times), pH and so on through Jar-test, to evaluate the flux variations, permeate, backwashing according to characteristics of pretreatment of the wastewater by means of MF membranes for river maintenance water reuse. The effluent water from B-city K-sewage treatment plant are used for this research. Turbidity and suspended solids(SS) are 14.2 NTU and 10.4 mg/L respectively. This condition causes fouling for membrane process. The flux decline could be reduced when coagulation pretreatment was carried out. Optimal coagulations PAC which are commonly used in the sewage treatment plant was observed in this research. The results indicate that an optimal coagulation dose and pH are 80 ppm and pH of 7 respectively, but coagulation efficiency was lower at strong acid or strong base. Results showed that continuous and steady operations in membrane separation process by means of the effective removal of organic matter and turbidity with coagulation pretreatment of sewage secondary effluent were achieved.

A Study on the Improvement of Membrane Separation and Optimal Coagulation by Using Effluent of Sewage Treatment Plant in Busan

  • Jung, Jin-Hee;Choi, Young-Ik;Han, Young-Rip
    • 한국환경과학회지
    • /
    • 제22권10호
    • /
    • pp.1353-1361
    • /
    • 2013
  • The objectives of this paper are the characterization of the pretreatment of wastewater by microfiltration (MF) membranes for river maintenance and water recycling. This is done by investigation of the proper coagulation conditions, such as the types and doses of coagulants, mixing conditions (velocity gradients and mixing periods), pH, etc., using jar tests. The effluent water from a pore control fiber (PCF) filter located after the secondary clarifier at Kang-byeon Sewage Treatment Plant (K-STP) was used in these experiments. Two established coagulants, aluminum sulfate (Alum) and poly aluminum chloride (PAC), which are commonly used in sewage treatment plants to treat drinking water, were used in this research. The results indicate that the optimal coagulation velocity gradients (G) and agitation period (T) for both Alum and PAC were 200-250 $s^{-1}$ and 5 min respectively, but the coagulation efficiencies for both Alum and PAC were lower at low values of G and T. For a 60 min filtration period on the MF, the flux efficiencies ($J/J_0$ (%)) at the K-STP effluent that were coagulated by PAC and Alum were 92.9 % and 79.9 %, respectively, under the same coagulation conditions. It is concluded that an enhanced membrane process is possible by effective filtration of effluent at the K-STP using the coagulation-membrane separation process.

PACl 및 Alum 응집제 특성이 정밀여과막 투과수량 및 막오염에 미치는 영향 (Impact of Characteristics of Polymeric Al Coagulants PACl and Alum on Membrane Flux and Fouling of Microfiltration)

  • 진용철;최양훈;권지향
    • 상하수도학회지
    • /
    • 제25권2호
    • /
    • pp.231-240
    • /
    • 2011
  • The objectives of this research are to investigate coagulation efficiencies of two coagulants l.e., alum and polyaluminum chloride and to understand effects of the coagulants on membrane fouling in microfiltration. The turbidity of supernatant from alum coagulation was increased with increasing doses whereas the turbidity from PACl coagulation was maintained at the low values. The observed injection volume of PACl for the same removal was approximately 30 percent less than alum, which produced a low sludge volume. The settling velocity of PACl flocs was greater than alum flocs. The results corresponded well with floc size measurements. Flux decline from alum coagulation was significant due in part to small sizes of flocs. At the low dose, alum floc had less specific cake resistance than PACl floc. However, as the dosage was increased, the increases in specific cake resistances of alum was substantial. Alum coagulation pretreatment needs careful operation to reduce membrane fouling by flocs. In general, PACl coagulants were more effective than alum coagulants for pretreatment of membrane processes because PACl showed the better performance in coagulation and membrane fouling.

Characterization of Binding Mode for Human Coagulation Factor XI (FXI) Inhibitors

  • Cho, Jae Eun;Kim, Jun Tae;Jung, Seo Hee;Kang, Nam Sook
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권4호
    • /
    • pp.1212-1220
    • /
    • 2013
  • The human coagulation factor XI (FXI) is a serine protease that plays a significant role in blocking of the blood coagulation cascade as an attractive antithrombotic target. Selective inhibition of FXIa (an activated form of factor XI) disrupts the intrinsic coagulation pathway without affecting the extrinsic pathway or other coagulation factors such as FXa, FIIa, FVIIa. Furthermore, targeting the FXIa might significantly reduce the bleeding side effects and improve the safety index. This paper reports on a docking-based three dimensional quantitative structure activity relationship (3D-QSAR) study of the potent FXIa inhibitors, the chloro-phenyl tetrazole scaffold series, using comparative molecular field analysis (CoMFA) and comparative molecular similarity analysis (CoMSIA) methods. Due to the characterization of FXIa binding site, we classified the alignment of the known FXIa inhibitors into two groups according to the docked pose: S1-S2-S4 and S1-S1'-S2'. Consequently, highly predictive 3D-QSAR models of our result will provide insight for designing new potent FXIa inhibitors.

정밀여과에 의한 하수고도처리수의 재이용을 위한 전처리법에 관한 연구 (A Study on the Pretreatment Process for Sewage Reuse by Microfiltration Process)

  • 국영롱;주재영;배윤선;이혜인;정인호;박철휘
    • 상하수도학회지
    • /
    • 제24권5호
    • /
    • pp.595-601
    • /
    • 2010
  • It is evident that Korea will continue its battle with water shortage and alternative program are being taken into action. One of the main actions is reusing 1,800 tons of effluent of 357 sewage treatment plant located nationwide. Therefore this study supplemented ozone oxidation methods that would increase the efficiency of organic oxidation and coagulation. Through this method, fouling will be controled sufficiently by preventing membrane process in the system for advanced sewage treatment. In this study, ozone-coagulation-microfiltration membrane were used. The final removal efficiency of the pretreated water from the result of the ozone-coagulation were 50% of CODcr, 38% of TP and 11% of TOC respectively. Water quality treatment has decreased about 80% for TP. Ozone-coagulation-microfiltration membrane maintains the high flux while decreasing the number of organic matter and the membrane fouling, and reducing the TP. As a result, in order to reuse the water from the sewage, the ozone-coagulation-microfiltration membrane type must be considered in order to achieve the best efficiency.

물리, 화학적 처리방법에 의한 염색폐수의 색도제거에 관한 연구 (A Study on the Reduction of Color in Dye Wastewaters by Physico-chemical Processes)

  • 이준석;김민호;김영규
    • 한국환경보건학회지
    • /
    • 제19권3호
    • /
    • pp.29-35
    • /
    • 1993
  • This study was performed to obtain optimal conditions for reduction of color in dye wastewaters using coagulation-sedimentation processes with redox reactions. The reduction of color as well as organic matters variation was observed after coagulation-sedimentation processes using FeSO$_4$ $\cdot$ 7H$_2$O and NaOCl. Coagulation-redox reaction was done with the dose of Coagulant and oxidant at various pH values. Redox reaction was done through jar-mixing and aeration. The results of study were as follows: 1. In the coagulation-sedimentation processes using FeSO$_4$ $\cdot$ 7H$_2$O, color reduction was heigher at pH 3. With variance of dosage of FeSO$_4$ $\cdot$ 7H$_2$O, color reduction was higher at 250 mg/l. When coagulation-sedimentation using FeSO$_4$ $\cdot$ 7H$_2$O 250 mg/l was added at pH 3, the reduction of color, COD$_{Mn}$, and COD$_{Cr}$ showed 47.6%, 21.3% and 22.1%, respectively. 2. When NaOCI was added at level of 100 ppm in raw wastewater at pH 3, the reduction of color, COD$_{Mn}$, and COD$_{Cr}$ showed 30.2%, 5.5% and 6.2%, respectively. 3. After coagulation-sedimentation processes by addition of FeSO$_4$ $\cdot$ 7H$_2$O, when NaOCl was added at level of 250 mg/l in supernant, color reduction was 47.8% in aeration and 37.5% in jar-mixing. 4. Color reduction by aeration was higher than that by jar-mixing.

  • PDF

정수처리공정 전처리로서의 공극제어 섬유여과기(PCF)의 적용 (Application of Pore-controllable Fiber Filter(PCF) as a Pretreatment for Water Treatment Process)

  • 이철우;이병구;이일국;이순화;배상대;강임석
    • 상하수도학회지
    • /
    • 제20권2호
    • /
    • pp.235-244
    • /
    • 2006
  • A PCF(Pore Controllable Fiber Filter) process was applied as a pretreatment of water treatment for reduction of turbidity. The experimental results obtained from the PCF showed that the removal efficiency of turbidity without coagulation was around over 70 percent. However, the removal efficiency of turbidity by the coagulation-PCF process was high as much as over 95%. Thus, the coagulation pretreatment was required for the better operation of the PCF. The SEM (Scanning Electron Microscope) images of fiber before and after filtration showed that the filtration mechanism of PCF filter is both controlling attachment mechanism and Sieving mechanism through fiber pore. For the coagulation-PCF process, optimum dosage of coagulant was needed for the economical operation, and for this, determining the optimum dosage by using a filter column test. Also only 16mg/L of alum was used to obtain high algae removal efficiency over 90%. Therefore, it can be concluded that coagulation-PCF process is very effective pretreatment process for algae removal.