• Title/Summary/Keyword: coagulant pH

Search Result 167, Processing Time 0.025 seconds

The Correlation Between the Polymeric Aluminum Species of Inorganic Coagulant and Its Coagulation Efficiency (알루미늄계 무기 고분자 응집제에서 알루미늄 폴리머 생성과 응집효율과의 상관관계)

  • Kim, Jee-Yeon;Lee, Chang-Ha;Sohn, Jin-Sik;Yoon, Je-Yong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.3
    • /
    • pp.331-336
    • /
    • 2004
  • The correlation between polymeric aluminum species of coagulant and its coagulation efficiency was investigated using several commercial polymeric Al(III) inorganic coagulants (Poly Aluminum Hydroxy Chloro Sulfate 2020 (PAHCS2020), Poly Aluminum Hydroxy Chloro Sulfate 2500 (PAHCS2500) which was introduced in Korean water treatment plants. The poly aluminum chloride (PAC), Poly Aluminum Hydroxide Chloride Silicate (PACS)) and the aluminum salts ($AlCl_3$, Alum ($Al_2(SO_4)_3$)) were used for the purpose of comparison. The comparison of the coagulation efficiency of each coagulant was made by turbidity removal through the standard jar testing procedure and the determination of the hydrolytic Al(III) species was made by the ferron method which can differentiate the monomeric aluminum species from the polymeric aluminum species. Overall, PAHCS2020 and PAHCS2500 showed the better performance in turbidity removal than the aluminum salts. The performance of coagulation was even better without adjustment of pH during the coagulation experiment. The positive correlation between polymeric aluminum species of coagulant and coagulation efficiency was found.

Flocculation Kinetics Using Fe(III) Coagulant in Advanced Water Treatment: The Effect of Sulfate Ion (상수처리시 Fe(III) 응집제를 이용한 응집동력학에 관한 연구 : 황산이온의 영향)

  • 강임석;이병헌
    • Journal of Environmental Science International
    • /
    • v.4 no.4
    • /
    • pp.367-377
    • /
    • 1995
  • The study of flocculation kinetics is of fundamental interest in the field of water treatment, because rational study of the factors affecting the coagulation process should be based on the rate of particle growth. The effect of sulfate on flocculation kinetics were examined using ferric nitrate as a coagulant to coagulate kaolin clay in water under several experimental conditions. Both the particle size distribution data obtained from the AIA and the on-line measurement of turbidity fluctuation by the PDA were used to measure flocculation kinetics. Results show that sulfate ion added to the kaolin suspension played an important role in the flocculation process, not only improving flocculation kinetics at more acidic pH levels but also changing surface charge of particles. The kinetics of flocculation were improved mainly by the enhanced rate and extent of Fe(III) precipitation attributed to the addition of sulfate, and thereby, better interparticle collision frequency, but little by the charge reductions resulting from the sulfate addition. The increase in sulfate concentration beyond $3\times10^{-4}M (up to 2\times10^{-3}M)$ did not induce further improvement in flocculation kinetics, although the higher concentrations of sulfate ion substantially increased the negative ZP value of particles. Key Words : Flocculation Kinetics, Fe(III) Coagulant, Sulfate ion, Turbidity Fluctuation.

  • PDF

Variation of Sedimentation & Dewaterability Characteristics of Sewage Sludge under Various Coagulants (응집제 종류에 따른 하수 슬러지의 침강 및 탈수 특성 변화)

  • Baik, Seon Jai;Jo, Jung Min;Song, Hyun Woo;Han, Ihn Sup
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.3
    • /
    • pp.311-318
    • /
    • 2014
  • The purpose of this study is to investigate the effect of various types of coagulant on dewaterability and settleability of sewage sludge for the application of dewatering process. Cationic organic coagulants and inorganic coagulants of the aluminium base were used; PAC (Poly Aluminium chloride, $Al_2O_3$ 17%) and C-210P (0.2%). After Jar test, PAC 26 mg/L and 0.2% C-210P 55 mg/L was decided as the optimum concentration of the coagulant according to zeta potential measurement. pH, alkalinity and viscosity were measured in all experiments and the data on sedimentation characteristics is analyzed by SDI, SVI sedimentation rate and solid flux. The SRF(Specific Resistance of Filtration) experiment was conducted with the result of single and dual injection system as the dewaterability experiment. As a result, the organic coagulant making large floc has good characteristics of sedimentation and agglutination. Also, it is observed that the organic coagulants injection has a better dewaterability efficiency of coagulants under the condition of the lowest SRF value, followed by dual and inorganic coagulants injection.

Determination of Optimun Coagulant Dosage for Effective Water Treatment of Chinyang Lake -The Effect of Coagulant Dosing on Remoaval of Colloidal Pollutants- (진양호소수의 효과적인 정수처리를 위한 최적응집제 주입량 결정 -콜로이드성 오염물질 처리를 위한 응집제 주입효과-)

  • 이원규;조주식;이홍재;허종수
    • Journal of Environmental Science International
    • /
    • v.7 no.6
    • /
    • pp.761-772
    • /
    • 1998
  • This study was performed to determine the optimum coagulant dosing amount for effective treatment of raw water. The removal rate of turbidity and the variations of water qualities according to various dosage of coagulants such as Alum, PAC and PACS were investigated. The optimum coagulant dosing amount to make the lowest turbidity of water were 35mg/ι t of Alum, 30mg/ι of PAC and 10mg/ι of PACS in case of 5 NTU of raw water turbidity, and 30mg/ι of Alum, 25mg/ι of PAC and 10mg/ι of PACS in case of 10 NTU of that, respectively. The removal rates of turbidity at 4 min. and 8 min. of settling time were 10 and 72% of Alum, 44 and 62% of PAC and 25 and 55% of PACS in case of 5 NTU, and 52 and 70% of Alum, 90 and 95% of PAC and 10 and 28% of PACS in case of 10 NTU, respectively. Judging from the settling capability of floc., the reaction time of floe. formation and removal efficiency of turbidity, PAC was evaluated as more effective coagulant than Alum and PACS. Also PAC was regarded as the most effective coagulant when the water supply was changed sharply and the fluctuation of the surface loading occured with wide and sharp in settling basin. pH and alkalinity of the water were decreased with increasing coagulants dosage. But pH and alkalinity were not decreased below 5.8 which is the standard for drinking water quality, and 10mg/ι which is the limit concentration of floc. breakage, respectively. Residual Al of the treated water was decreased with increasing coagulants dosage in case of 5 and 10NTU of raw water turbidity. $KMnO_4$ consumption of the water was decreased with increasing coagulants dosage. The reduction rate of $KMnO_4$ consumption at the optimum coagulants dosage were 39% of Alum. 18% of PAC and 11% of PACS in case of 5 NTU of raw water turbidity, and 42% of Alum, 27% of PAC and 36% of PACS in case of 10 NTU of that, respectively. Any relationship was not found between the removal rate of turbidity and KMnO$_4$ consumption. TOC of the water was a bit decreased with increasing coagulants dosage up to 30mg/ι but not changed above 30mg/ι of coagulants dosage. The degree of TOC reduction was increased in the order of Alum, PAC and PACS treatment. Zeta potential of the colloidal floe. at the optimum coagulants dosage was in the range of -20~-15mV in case of 5 NTU of raw water turbidity and 0~0.5mV in case of 10 NTU of that. respectively. Although the kinds and dosages of coagulants were different, zeta potential range were fixed under the conditions of the best coagulation efficiency.

  • PDF

Optimal coagulant and its dosage for turbidity and total organic dissolved carbon removal (탁도와 총유기탄소 제거를 위한 최적응집제 및 투여량 선정 연구)

  • Park, Hanbai;Woo, Dal-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.2321-2327
    • /
    • 2015
  • Three coagulants, alum sulfate(alum), poly aluminum chloride(PAC) and poly aluminum silicate chloride (PASC), were used to remove low to high turbidity and TOC in surface and ground blended water. Laboratory experiments and pilot plant experiments were carried out to evaluate the optimal coagulant and its dosage. To determine the optimized coagulant and its dosage, the turbidity, TOC and pH were measured. The experimental results showed the best removal performance using PASC. The optimal dosage of PASC between 3-20 NTU was found to be 15 mg/L in the jar test. In the pilot test, a 15 mg/L PASC dosage was applied and resulted in the efficient removal of turbidity and TOC between 3.6-27 NTU. The removal efficiency of PASC increased with increasing turbidity and TOC.

A study on the combination SCD, Pilot Filter and automatic coagulant feeding system in WTP (정수장 SCM, Pilot Filter와 자동응집제주입시스템의 조합에 관한 연구)

  • 최기선;임기영
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.19-22
    • /
    • 2001
  • In this paper, Streaming Current Monitor (SCM), Pilot Filter (PF) and Coagulant Feeding System(CFS) for fuzzy neural network are used as a coagulation control method in WTP and the results are compared. Several parameters such as coagulant dosage, pH, and turbidity have been changed to find the response characteristic of each equipment. SCM, PF and CFS responded for certain parameters but the range of sensitivity was different each other. It is demonstrated that WTP will be operated more efficiently when SCM, PF and CFS are used as coagulation control strategy.

  • PDF

Co-precipitation of Turbidity and Dissolved Organic Matters by Coagulation (응집(凝集)에 의한 탁도물질(濁度物質) 및 용존(溶存) 유기물질(有機物質)의 동시제거(同時除去)에 대한 연구(硏究))

  • Jeong, Sang-Gi;Jun, Hang-Bae;Kim, Hag-Seong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.9 no.3
    • /
    • pp.99-107
    • /
    • 1995
  • Various humic substances are widely distributed in natural water body, such as rivers and lakes and cause the yellowish or brownish color to water. The evidence that humic substances are precursors of THMs formation in chlorinated drinking water has been reported m the Jiteratures. For the reason of public health as well as aesthetics, needs for humic substances removal have been increased in the conventional water treatment processes. In this research, the characteristics of aluminium coagulation of humic acids and humic acids were investigated. The optimum pH and coagulants dosage to remove these materials simultaneously by coagulation were alto studied. The results are as followed; 1. UV-254 absorptiometry for measuring the concentration of aquatic humic acids showed good applicability and stable results. 2. The optimal pH range for humic acids removal by aluminium coagulation was 5 to 5.5, however, an increase in aluminium coagulant dosage could enhance the removal rate of humic acids in the wide pH range. 3. Coprecipitation of humic acids in the typical pH range of 6.5 to 8 in water treatment processes may require the sweep coagulation mechanism with the excess aluminium coagulant dosage. 4. Using PAC(poly aluminium chloride) or PASS(poly aluminium silica sulfate) as coagulants was able to expand the operating range for removing humic acids. 5. From the coagulation of humic substances(UV-254) and turbidity at pH range of 5.5 - 6.0 and alum dose of 86 ppm, the removal efficiency of turbidity from the reservoir water was above 90% and that of UV-254 was above 70%. 6. By using the reservoir water, the optimum condition of rapid mixing for simultaneous removal of turbidity and UV-254 absorbance was pH of 5.8 and LAS dose of 86 ppm, in this study.

  • PDF

The Application of Aluminum Coagulant for the Improvement of Water Quality in Three Recreational Ponds (알루미늄 응집제를 사용한 호수수질 개선 사례 연구)

  • Kang, Phil-Goo;Kim, Bom-Chul
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.4 s.105
    • /
    • pp.447-454
    • /
    • 2003
  • Aluminum coagulant was applied to two eutrophic lakes (Lake Sukchon, in Seoul, and a pond on the campus of Kangwon National University), to precipitate suspended particles and phosphate from the water column. Aluminum sulfate (alum) was used for seven treatments and polyaluminum chloride (PAC) was used for one treatment. The effect of treatment varied depending on the dose of alumium coagulant. Particles and phosphate were completely precipitated from the water column with a dose of 10.0 mgAl/l. Partial removal was observed at doses of 3.3 and 1.8 mgAl/l, but not at 0.45 mgAl/l. Therefore, coagulant should be applied at a dose over the threshold in order to remove particles effectively, which seems to be between 1.8 and 10.0 mgAl/l. The length of treatment effect was determined by new inputs of nutrients and particles from external sources. Renewal of pond water by stream water caused recovery of algal growth in Lake Sukchon, and rainfall runoff and ground water pumping caused a return of turbid water in the campus pond. During treatment there was no sign of decreasing pH, or harmful effects on fish or mussels. Aluminum coagulant may be an economically feasible alternative for water quality improvement when the external control of pollutant sources is difficult. However, repeated application is required when there is a renewal of lake water or new input of nutrients.

Removal of Copper and Zinc Ions by Neutralization from the Spent Sulfate Solutions of Brass Bulb Base (황동(黃銅) 전구(電球) Base 제조과정(製造過程)에서 발생(發生)한 구리와 아연 함유(含有) 황산폐수(黃酸廢水)의 중화법(中和法)에 의한 제거(除去))

  • Lee, Man-Seung;Ahn, Jae-Woo;Lee, Chang-Hae
    • Resources Recycling
    • /
    • v.16 no.6
    • /
    • pp.39-45
    • /
    • 2007
  • Optimum condition for neutralization has been studied to remove the copper and zinc ions from spent sulfate solutions which resulted from the acid washing of the base of brass bulb. Chemical distribution of copper and zinc species and the variation of solubility of the two ions with solution pH were obtained by considering the complex formation reaction and mass balance. Removal percentage of zinc was more sensitive to solution pH than that of copper. This results from the fact that the solubility of zinc is higher than that of copper. The form of coagulant affected little the removal percentage of zinc, while addition of coagulant as the phase of solution resulted in higher removal percentage of copper than as the phase of solid.

A Study on Alum recovery and reuse from the sludge in water treatment plant. (상수도 정수장 오이중 Alum회수 및 재활용에 관한 연구)

  • 김관천;노기환;강영식;이치영;류일광
    • Journal of environmental and Sanitary engineering
    • /
    • v.10 no.1
    • /
    • pp.86-96
    • /
    • 1995
  • Alum recovery has recently gained more attention because many water utilities need to improve their sludge handling and disposal practices. As part of an overall sludge management program recovery can reduce the amount of solids and allow for reuse of the recovered Alum as a coagulant. This study was examined the effectiveness of Alum recovery from the Sludge at the D water treatment plant in Kwangju city. The results were summarized as follows 1. Alum recovery was obtained sufficiently acidification(An optimum condition was pH2-3) With $H_{2}SO_{4}$ to settled sludge. In this case recovered liquid Alum from sludge of 2.1% solids concentration at pH 2.1 was contains Aluminum $1,602mg/{\ell}$(as $Al_{2}O_{3}$ 0.3% ) and other metal of low level. 2. It was an optimum condition to all reuse of recovered Alum as a coagulant that rate of Commercial Alum:Recovered Alum=$14{\mu}{\ell}/{\ell}{\;}:{\;}200{\mu}{\ell}/{\ell}$ In a result of Jar Tests. 3. It was a result of Alum recovery from sludge, the reduction effect of amount of solids was about 57.4%. 4. If all recovered Alum were reused the reduction effect of solid wastes disposal cost and chemical drug's cost was about 22%.

  • PDF