• Title/Summary/Keyword: coagulant dosing process

Search Result 20, Processing Time 0.025 seconds

A study on coagulant dosing process in water purification system (상수처리시스템의 응집제 주입공정 모델링에 관한 연구)

  • 남의석;우광방
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.317-320
    • /
    • 1997
  • In the water purification plant, chemicals are injected for quick purification of raw water. It is clear that the amount of chemicals intrinsically depends on the water quality such as turbidity, temperature, pH and alkalinity etc. However, the process of chemical reaction to improve water quality by the chemicals is not yet fully clarified nor quantified. The feedback signal in the process of coagulant dosage, which should be measured (through the sensor of the plant) to compute the appropriate amount of chemicals, is also not available. Most traditional methods focus on judging the conditions of purifying reaction and determine the amounts of chemicals through manual operation of field experts or jar-test results. This paper presents the method of deriving the optimum dosing rate of coagulant, PAC(Polymerized Aluminium Chloride) for coagulant dosing process in water purification system. A neural network model is developed for coagulant dosing and purifying process. The optimum coagulant dosing rate can be derived the neural network model. Conventionally, four input variables (turbidity, temperature, pH, alkalinity of raw water) are known to be related to the process, while considering the relationships to the reaction of coagulation and flocculation. Also, the turbidity in flocculator is regarded as a new input variable. And the genetic algorithm is utilized to identify the neural network structure. The ability of the proposed scheme validated through the field test is proved to be of considerable practical value.

  • PDF

Automatic Determination of Coagulant Dosing Rate Using Fuzzy Neural Network (Fuzzy Neural Network에 응집제 투입률의 자동결정)

  • Chung, Woo-Seop;Oh, Sueg-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.1
    • /
    • pp.101-107
    • /
    • 1997
  • Recently, as the raw water quality becomes to be polluted and the seasonal and local variation of water quality becomes to be severe, an exact control of coagulant dosing have been required in the water treat- ment plant. The amounts of coagulant is related to the raw water quality such as turbidity, alkalinity, water temperature, pH and edectrical conductivity. However the process of chemical reaction has not been clarified so far, so the dosing rate has been decided by jar-test, which is taken one or two hours. For the sake of this coagulant dosing control, fuzzy neural network to fuse fuzzy logic and neural network was proposed, and the scheme was applied to automatic determination of coagulant dosing rate. This controller can automatically identify the if-then rules and tune the membership functions by utilizing expert's cintrol data. It is shown that determination of coagulant dosing rate according to real time sensing of water quality is very effect.

  • PDF

Development of intelligent coagulant feeding system (지능형 응집제 투입 시스템의 개발)

  • Chung, Woo-Seop;Oh, Sueg-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.6
    • /
    • pp.652-658
    • /
    • 1997
  • Coagulant feeding control is very important in the water treatment process. Coagulant feeding is related to the raw water quality such as turbidity, alkalinity, water temperature, pH and so on. However, since the process of chemical reaction has not been clarified so far, coagulant dosing rate has been decided by jar-test. In order to overcome the difficulty mentioned above, Fuzzy Neural Network to fuse fuzzy logic and neural network was proposed, and the scheme was applied to the automatic determination of coagulant dosing rate. This algorithm can automatically identify the if-then rules, tune the membership functions by utilizing expert's experimental data. The proposed scheme is evaluated by computer simulation and interfaced with coagulant feeder operated by magnetic flowmeter, control valve and PLC. It is shown that coagulant feeding according to real time sensing of water quality is very effective.

  • PDF

Fuzzy modeling and control for coagulant dosing process in water purification system (상수처리시스템 응집제 주입공정 퍼지 모델링과 제어)

  • 이수범;남의석;이봉국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.282-285
    • /
    • 1996
  • In the water purification plant, the raw water is promptly purified by injecting chemicals. The amount of chemicals is directly related to water quality such as turbidity, temperature, pH and alkalinity. At present, however, the process of chemical reaction to the turbidity has not been clarified as yet. Since the process of coagulant dosage has no feedback signal, the amount of chemical can not be calculated from water quality data which were sensed from the plant. Accordingly, it has to be judged and determined by Jar-Test data which were made by skilled operators. In this paper, it is concerned to model and control the coagulant dosing process using jar-test results in order to predict optimum dosage of coagulant, PAC(Polymerized Aluminium Chloride). The considering relations to the reaction of coagulation and flocculation, the five independent variables(turbidity, temperature, pH, Alkalinity of the raw water, PAC feed rate) are selected out and they are put into calculation to develope a neural network model and a fuzzy model for coagulant dosing process in water purification system. These model are utilized to predict optimum coagulant dosage which can minimize the water turbidity in flocculator. The efficacy of the proposed control schemes was examined by the field test.

  • PDF

A Study on the Coagulant Dosing Control Based on Neural Network and Streaming Current Detector for Water Treatment Plant (신경망과 유동전류계를 이용한 정수장 응집제 주입제어에 관한 연구)

  • Kim, Ki-Pyung;Kim, Yong-Yeol;Yoo, Jun;Kang, Yi-Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.6
    • /
    • pp.551-556
    • /
    • 2004
  • Coagulation process is one of the most important processes in water treatment procedures for stable and economical operation, and coagulant dosing of this process for most plants is generally determined by the jar test. However, this method does not only take a long time to analyze and get the result but also has difficulties in applying to automatic control. This paper shows the feasibility of applying neural network to control the coagulant dosing automatically in water treatment plant. To be specific, the predicted results of the neural network model is shown to be similar to that of jar test. The input variables for learning the neural network are turbidity, water temperature, pH, and alkalinity. Combining the neural network and SCD(Streaming Current Detector) for feedforward and feedback control of injecting coagulant, a rapid change of the raw water quality can be accommodated.

Optimization of coagulant dosing process in water purification system using neural network (신경회로망을 이용한 상수처리시스템의 응집제 주입공정 최적화)

  • Nam, Ui-Seok;Park, Jong-Jin;Jang, Seok-Ho;Cha, Sang-Yeop;U, Gwang-Bang;Lee, Bong-Guk;Han, Tae-Hwan;Go, Taek-Beom
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.6
    • /
    • pp.644-651
    • /
    • 1997
  • In the water purification plant, chemicals are injected for quick purification of raw water. It is clear that the amount of chemicals intrinsically depends on water quality such as turbidity, temperature, pH and alkalinity. However, the process of chemical reaction to improve water quality (e.g., turbidity) by chemicals is not yet fully clarified nor quantified. The feedback signal in the process of coagulant dosage, which should be measured (through the sensor of the plant) to compute the appropriate amount of chemicals, is also not available. Most traditional methods focus on judging the conditions of purifying reaction and determine the amounts of chemicals through manual operation of field experts using Jar-test data. In this paper, a systematic control strategy is proposed to derive the optimum dosage of coagulant, PAC(Polymerized Aluminium Chloride), using Jar-test results. A neural network model is developed for coagulant dosing and purifying process by means of six input variables (turbidity, temperature, pH, alkalinity of raw water, PAC feed rate, turbidity in flocculation) and one output variable, while considering the relationships to the reaction of coagulation and flocculation. The model is utilized to derive the optimum coagulant dosage (in the sense of minimizing turbidity of water in flocculator). The ability of the proposed control scheme validated through the field test has proved to be of considerable practical value.

  • PDF

Automatic Control of Coagulant Dosing Rate Using Self-Organizing Fuzzy Neural Network (자기조직형 Fuzzy Neural Network에 의한 응집제 투입률 자동제어)

  • 오석영;변두균
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.11
    • /
    • pp.1100-1106
    • /
    • 2004
  • In this report, a self-organizing fuzzy neural network is proposed to control chemical feeding, which is one of the most important problems in water treatment process. In the case of the learning according to raw water quality, the self-organizing fuzzy network, which can be driven by plant operator, is very effective, Simulation results of the proposed method using the data of water treatment plant show good performance. This algorithm is included to chemical feeder, which is composed of PLC, magnetic flow-meter and control valve, so the intelligent control of chemical feeding is realized.

Determination of dosing rate for water treatment using fusion of genetic algorithms and fuzzy inference system (유전알고리즘과 퍼지추론시스템의 합성을 이용한 정수처리공정의 약품주입률 결정)

  • 김용열;강이석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.952-955
    • /
    • 1996
  • It is difficult to determine the feeding rate of coagulant in water treatment process, due to nonlinearity, multivariables and slow response characteristics etc. To deal with this difficulty, the fusion of genetic algorithms and fuzzy inference system was used in determining of feeding rate of coagulant. The genetic algorithms are excellently robust in complex operation problems, since it uses randomized operators and searches for the best chromosome without auxiliary information from a population consists of codings of parameter set. To apply this algorithms, we made the look up table and membership function from the actual operation data of water treatment process. We determined optimum dosages of coagulant (PAC, LAS etc.) by the fuzzy operation, and compared it with the feeding rate of the actual operation data.

  • PDF

A Study on the Determination of Dosing Rate for the Water Treatment using Genetic-Fuzzy (유전-퍼지를 이용한 정수장 응집제 주입률 결정에 관한 연구)

  • 김용열;강이석
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.7
    • /
    • pp.876-882
    • /
    • 1999
  • It is difficult to determine the feeding rate of coagulant in the water treatment process, due to nonlinearity, multivariables and slow response characteristics, etc. To deal with this difficulty, the genetic-fuzzy system was used in determining the feeding rate of the coagulant. The genetic algorithms are excellently robust in complex optimization problems. Since it uses randomized operators and searches for the best chromosome without auxiliary informations from a population consists of codings of parameter set. To apply this algorithms, we made the lookup table and membership function from the actual operation data of the water treatment process. We determined optimum dosages of coagulant(LAS) by the fuzzy operation, and compared it with the feeding rate of the actual operation data.

  • PDF

A Study on the improvement of Chemicals Dosing Performance using Neural network in a Purification Plant (신경회로망을 이용한 상수처리설비의 약품주입 성능개선에 관한 연구)

  • 류승기;최도혁;홍규장;문학룡;한태환;유정웅
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.3
    • /
    • pp.104-113
    • /
    • 1998
  • In genral, the water process facilities include the purification plant, the waste water plant and the process of this purification plant is consisted of the intake, coagulation, settling, filtration, disinfection. The coagulation is very important in filtration processing plant and is very related to process of turbidity. The coagulation to the turbidity is, however, not yet to be clarified and the amount of coagulant can not be easily calculated. Moreover the coagulant dosing amount has to be decided adaptively according to the qualities of the raw water. So, the automation of chemicals dosing process and the supervisory system were needed to improve the performance of facilities. In this paper, a neural network is employed to model the coagulation to the turbidity of the treated water and the historical jar-test data are used to train the neural network. And also, an automation system to support the coagulant dosing process using the neural network was implemented and was shown by the field test. This automation system for the operator support system was constructed the environment to supervise the state an management of facilities for the maintenance.

  • PDF