• Title/Summary/Keyword: co-stimulatory molecules

Search Result 34, Processing Time 0.019 seconds

Effects of Red-ginseng Extracts on the Activation of Dendritic Cells (고려홍삼의 수지상세포 활성화 효과)

  • Kim, Do-Soon;Park, Jueng-Eun;Seo, Kwon-Il;Ko, Sung-Ryong;Lee, Jong-Won;Do, Jae-Ho;Yee, Sung-Tae
    • Journal of Ginseng Research
    • /
    • v.30 no.3
    • /
    • pp.117-127
    • /
    • 2006
  • Ginseng is a medicinal herb widely used in Asian countries. Dendritic cells(DCs) play a pivotal role in the initiation of T cell-mediated immune responses, making them an attractive cellular adjuvant for use in cancer vaccines. In this study, we examined the effects of Red-ginseng(water extract, edible and fermented ethyl alcohol extract, crude saponin) on the DCs phenotypic and functional maturation. Immature DCs were cultured in the presence of GM-CSF and IL-4, and the generated immature DCs were stimulated by water extract, edible and fermented ethyl alcohol extract, crude saponin and LPS, respectively, for 24hours. The expression of surface co-stimulatory molecules, including MHC(major histocompatibility complex) class II, CD40, CD80 and CD86, was increased on DCs that were stimulated with crude saponin, but antigen-uptake capacity was decreased. The antigen-presenting capacity of Red-ginseng extracts-treated DCs as analyzed by allogeneic T cells proliferation and IL-2, $IFN-{\gamma}$ production was increased. Furthermore, $CD4^+$ and $CD8^+$ syngeneic T cell(OVA-specific) proliferation and $IFN-{\gamma}$ production was significantly increased. However, $CD4^+$ syngeneic T cell secreted higher levels of IL-2 in responding but not $CD8^+$ syngeneic T cell. These results indicate the immunomodulatory properties of Red-ginseng extracts, which might be therapeutically useful in the control of cancers and immunodeficient diseases through the up-regulation of DCs maturation.

Orientia tsutsugamushi Infection Induces $CD4^+$ T Cell Activation via Human Dendritic Cell Activity

  • Chu, Hyuk;Park, Sung-Moo;Cheon, In Su;Park, Mi-Yeoun;Shim, Byoung-Shik;Gil, Byoung-Cheol;Jeung, Woon Hee;Hwang, Kyu-Jam;Song, Ki-Duk;Hong, Kee-Jong;Song, Manki;Jeong, Hang-Jin;Han, Seung Hyun;Yun, Cheol-Heui
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.8
    • /
    • pp.1159-1166
    • /
    • 2013
  • Orientia tsutsugamushi, a gram-negative bacterium, causes severe acute febrile illness in humans. Despite this danger, the route of infection, infectivity, and protective mechanisms of the host's immune response to O. tsutsugamushi are unclear. Dendritic cells (DCs) are one of the most important cell types in bridging the innate and adaptive immune responses. In this study, we observed that O. tsutsugamushi infects and replicates in monocyte-derived DCs (MODCs). During infection and replication, the expressions of the cytokines IL-12 and TNF-${\alpha}$, as well as the co-stimulatory molecules CD80, CD83, CD86, and CD40, were increased in MODCs. When O. tsutsugamushi-treated MODCs were co-cultured with autologous $CD4^+$ T cells, they enhanced production of IFN-${\gamma}$, a major Th1 cytokine. Collectively, our results show that O. tsutsugamushi can replicate in MODCs and can simultaneously induce MODC maturation and increase proinflammatory cytokine levels in MODCs that subsequently activate $CD4^+$ T cells.

Flaviviruses Induce Pro-inflammatory and Anti-inflammatory Cytokines from Murine Dendritic Cells through MyD88-dependent Pathway

  • Aleyas, Abi G.;George, Junu A.;Han, Young-Woo;Kim, Hye-Kyung;Kim, Seon-Ju;Yoon, Hyun-A;Eo, Seong-Kug
    • IMMUNE NETWORK
    • /
    • v.7 no.2
    • /
    • pp.66-74
    • /
    • 2007
  • Background: The genus Flavivirus consists of many emerging arboviruses, including Dengue virus (DV), Japanese encephalitis virus (JEV) and West Nile virus (WNV). Effective preventive vaccines remain elusive for these diseases. Mice are being increasingly used as the animal model for vaccine studies. However, the pathogenic mechanisms of these viruses are not clearly understood. Here, we investigated the interaction of DV and JEV with murine bone marrow-derived dendritic cells (bmDC). Methods: ELISA and FACS analysis were employed to investigate cytokine production and phenotypic changes of DCs obtained from bone marrow following flavivirus infection. Results: We observed that these viruses altered the cytokine profile and phenotypic markers. Although both viruses belong to the same family, JEV-infected bmDC produced anti-inflammatory cytokine (IL-10) along with pro-inflammatory cytokines, whereas DV infection induced production of large amounts of pro-inflammatory cytokines (IL-6 and TNF-${\alpha}$) and no IL-10 from murine bmDCs. Both flaviviruses also up-regulated the expression of co-stimulatory molecules such as CD40, CD80 and CD86. JEV infection led to down-regulation of MHC II expression on infected bmDCs. We also found that cytokine production induced by JEV and DV is MyD88-dependent. This dependence was complete for DV, as cytokine production was completely abolished in the absence of MyD88. With regard to JEV, the absence of MyD88 led to a partial reduction in cytokine levels. Conclusion: Here, we demonstrate that MyD88 plays an important role in the pathogenesis of flaviviruses. Our study provides insight into the pathogenesis of JEV and DV in the murine model.

Sarijang Enhances Maturation of Murine Bone Marrow-Derived Dendritic Cells (사리장 처리에 의한 수지상세포의 성숙 유도)

  • Jin, Cheng-Yun;Han, Min-Ho;Park, Cheol;Hwang, Hye-Jin;Choi, Eun-A;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.21 no.12
    • /
    • pp.1789-1794
    • /
    • 2011
  • Dendritic cells (DCs) are professional antigen-presenting cells playing key roles in immune sentinels as initiators of T-cell responses against microbial pathogens and tumors. Sarijang, a folk sauce containing extracts of Rhynchosia nulubilis, Ulmus davidiana roots, Allium sativum, and Rhus Verniaiflura bark, has been used as a nonspecific immunostimulant for cancer patients. However, little is known about its immunomodulating effects or their mechanisms. In this study, we investigated whether sarijang induces phenotypic and functional maturation of DCs. For this study, murine bone marrow-derived myeloid DCs were cultured in the presence of interleukin-4 (IL-4) and granulocyte-macrophage colony stimulating factor (GM-CSF), and the generated immature DCs were stimulated with sarijang or lipopolysaccharide (LPS). Our data indicated that sarijang significantly enhanced the expression of co-stimulatory molecules (CD80 and CD86) as well as major histocompatibility complex (MHC) II, as did LPS. The results provide new insight into the immunopharmacology of sarijang and suggest a novel approach to the manipulation of DC for therapeutic application.