• 제목/요약/키워드: co-sputtering target configuration

검색결과 3건 처리시간 0.022초

Deposition of Cu-Ni films by Magnetron Co-Sputtering and Effects of Target Configurations on Film Properties

  • Seo, Soo-Hyung;Park, Chang-Kyun;Kim, Young-Ho;Park, Jin-Seok
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제3C권1호
    • /
    • pp.23-27
    • /
    • 2003
  • Structural properties of Cu-Ni alloy films, such as preferred orientation, crystallite size, in-ter-planar spacing, cross-sectional morphology, and electrical resistivity, are investigated in terms of tar-get configurations that are used in the film deposition by means of magnetron co-sputtering. Two different target configurations are considered in this study: a dual-type configuration in which two separate tar-gets (Cu and Ni) and different bias types (RF and DC) are used and a Ni-on-Cu type configuration in which Ni chips are attached to a Cu target. The dual-type configuration appears to have some advantages over the Ni-on-Cu type regarding the accurate control of atomic composition of the deposited Cu-Ni alloy. However, the dual-type-produced film exhibits a porous and columnar structure, the relatively large internal stress, and the high electrical resistivity, which are mainly due to the relatively low mobility of adatoms. The affects of thermal treatment and deposition conditions on the structural and electrical properties of dual-type Cu-Ni films are also discussed.

Electrical Properties of P-ZnO:(Al,N) Co-doped ZnO Films Fabricated by RF Magnetron Sputtering

  • Jin, Hu-Jie;Kim, Deok-Kyu;So, Byung-Moon;Park, Choon-Bae
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.442-443
    • /
    • 2007
  • Al-N co-doped ZnO films were fabricated on n-Si (100) and homo-buffer layers in the mixture of oxygen and nitrogen at $450^{\circ}C$ by magnetron sputtering. Target was ZnO ceramic mixed with $2wt%Al_2O_3$. XRD spectra show that as-grown and $600^{\circ}C$ annealed films are prolonged along crystal c-axis. However they are not prolonged in (001) plane vertical to c-axix. The films annealed at $800^{\circ}C$ are not prolonged in any directions. Codoping makes ZnO films unidirectional variation. XPS show that Al content hardly varies and N escapes with increasing annealing temperature from $600^{\circ}C\;to\;800^{\circ}C$. The electric properties of as-grown films were tested by Hall Effect with Van der Pauw configuration show some of them to be p-type conduction.

  • PDF

RF 마그네트론 스퍼터링에 의한 ZnO박막의 증착 및 구리 도우핑 효과 (Deposition of ZnO Thin Films by RF Magnetron Sputtering and Cu-doping Effects)

  • 이진복;이혜정;서수형;박진석
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제49권12호
    • /
    • pp.654-664
    • /
    • 2000
  • Thin films of ZnO are deposited by using an RF magnetron sputtering with varying the substrate temperature(RT~39$0^{\circ}C$) and RF power(50~250W). Cu-doped ZnO(denoted by ZnO:Cu) films have also been prepared by co-spputtering of a ZnO target on which some Cu-chips are attached. Different substrate materials, such as Si, $SiO_{2}/Si$, sapphire, DLC/Si, and poly-diamond/Si, are employed to compare the c-axial growth features of deposited ZnO films. Texture coefficient(TC) values for the (002)-preferential growth are estimated from the XRD spectra of deposited films. Optimal ranges of RF powers and substrate temperatures for obtaining high TC values are determined. Effects of Cu-doping conditions, such as relative Cu-chip sputtering areas, $O_{2}/(Ar+O_{2})$ mixing ratios, and reactor pressures, on TC values, electrical resistivities, and relative Cu-compositions of deposited ZnO:Cu films have been systematically investigated. XPS study shows that the relative densities of metallic $Cu(Cu^{0})$ atoms and $CuO(Cu^{2+})$-phases within deposited films may play an important role of determining their electrical resistivities. It should be noted from the experimental results that highly resistive(> $10^{10}{\Omega}cm$ ZnO films with high TC values(> 80%) can be achieved by Cu-doping. SAW devices with ZnO(or Zn):Cu)/IDT/$SiO_{2}$/Si configuration are also fabricated to estimate the effective electric-mechanical coupling coefficient($k_{eff}^{2}$) and the insertion loss. It is observed that the devices using the Cu-doped ZnO films have a higher $k_{eff}^{2}$ and a lower insertion loss, compared with those using the undoped films.

  • PDF