• Title/Summary/Keyword: co-rotation

Search Result 364, Processing Time 0.058 seconds

Influence of Processing on Morphology, Electrical Conductivity and Flexural Properties of Exfoliated Graphite Nanoplatelets-Polyamide Nanocomposites

  • Liu, Wanjun;Do, In-Hwan;Fukushima, Hiroyuki;Drzal, Lawrence T.
    • Carbon letters
    • /
    • v.11 no.4
    • /
    • pp.279-284
    • /
    • 2010
  • Graphene is one of the most promising materials for many applications. It can be used in a variety of applications not only as a reinforcement material for polymer to obtain a combination of desirable mechanical, electrical, thermal, and barrier properties in the resulting nanocomposite but also as a component in energy storage, fuel cells, solar cells, sensors, and batteries. Recent research at Michigan State University has shown that it is possible to exfoliate natural graphite into graphite nanoplatelets composed entirely of stacks of graphene. The size of the platelets can be controlled from less than 10 nm in thickness and diameters of any size from sub-micron to 15 microns or greater. In this study we have investigated the influence of melt compounding processing on the physical properties of a polyamide 6 (PA6) nanocomposite reinforced with exfoliated graphite nanoplatelets (xGnP). The morphology, electrical conductivity, and mechanical properties of xGnP-PA6 nanocomposite were characterized with electrical microscopy, X-ray diffraction, AC impedance, and mechanical properties. It was found that counter rotation (CNR) twins crew processed xGnP/PA6 nanocomposite had similar mechanical properties with co-rotation (CoR) twin screw processed or with CoR conducted with a screw design modified for nanoparticles (MCoR). Microscopy showed that the CNR processed nanocomposite had better xGnP dispersion than the (CoR) twin screw processed and modified screw (MCoR) processed ones. It was also found that the CNR processed nanocomposite at a given xGnP content showed the lowest graphite X-ray diffraction peak at $26.5^{\circ}$ indicating better xGnP dispersion in the nanocomposite. In addition, it was also found that the electrical conductivity of the CNR processed 12 wt.% xGnP-PA6 nanocomposite is more than ten times higher than the CoR and MCoR processed ones. These results indicate that better dispersion of an xGnP-PA6 nanocomposite is attainable in CNR twins crew processing than conventional CoR processing.

Synthesis and Properties of New Aromatic Polyimides for IPS-mode

  • Kim, Y.B.;Park, J.C.;Park, D.J.;Son, K.C.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.792-795
    • /
    • 2006
  • In-plane-switching (IPS)-mode LCD is one of the most useful technologies for a broad range of viewing angles. To apply for IPS-LCDs, we synthesized novel homogeneous alignment materials, changing dianhydrides (BTDA and BPDA) and bridged diamines (ODA and PACM). We measured their pre-tilt angles using the crystal rotation method with positive LC and their surface properties.

  • PDF

Fabrication of Eu$^{2+}$-doped Fiber and its Faraday Rotation Characteristics (Eu$^{2+}$이 첨가된 광섬유의 제조 및 Faraday 회전 특성)

  • Kim, Deok-Hyeon;Kim, Bok-Hyeon;Baek, Un-Chul;Han, Won-Taek
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2004.02a
    • /
    • pp.124-125
    • /
    • 2004
  • Eu$^{2+}$ doped optical fibers were developed for magneto-optical application by use of CO gas as a reduction agent during MCVD process and the Verdet constant of the Eu$^{2+}$ doped fiber was found to be -0.819[rad/T ${\cdot}$ m], which is three times larger than that of the Eu$^{3+}$ doped fiber.

  • PDF

A Study on Physical Properties Of Co3O4-added Ni- Zn Ferrite at High Frequency (Co3O4첨가에 따른 고주파용 Ni-Zn계 ferrite의 물리적 특성 연구)

  • Koh, Jae-Gui
    • Korean Journal of Materials Research
    • /
    • v.12 no.10
    • /
    • pp.791-795
    • /
    • 2002
  • We studied the physical properties of $Co_3$$O_4$-added Ni-Zn ferrite which were sintered at 1050~110$0^{\circ}C$ for 2 hours. X-ray diffraction showed a spinel structure, and optical microscopy showed grain sizes of 5 to 10 $\mu\textrm{m}$. As the sintering temperature was increased from $1050^{\circ}C$ to $1070^{\circ}C$, the initial permeability and magnetic induction increased, and both of the loss factor and the coercive force decreased. The Curie temperatures were about $^234~245{\circ}C$ with added $Co_3$$O_4$. The initial permeability was 350 to 420 and maximum magnetic induction density and coercive force 4870G to 4980G and 0.15 Oe to 0.21 Oe, respectively which were similar to those of Ni-Zn ferrite synthesized in the conventional process. The frequency of specimen was in the range of 1MHz to 300MHz. In the plot of initial permeability vs. frequencies, a $180^{\circ}C$ rotation of the magnetic domain could be perceived in a broad band of microwave before and after the resonance frequency.

Hydrodynamic and Oxygen Effects on Corrosion of Cobalt in Borate Buffer Solution (Borate 완충용액에서 코발트의 부식에 대한 대류와 산소의 영향)

  • Kim, Younkyoo
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.5
    • /
    • pp.437-444
    • /
    • 2014
  • The electrochemical corrosion and passivation of Co-RDE in borate buffer solution was studied by Potentiodynamic and electrochemical impedance spectroscopy. The mechanisms of both the active dissolution and passivation of cobalt and the hydrogen evolution in reduction reaction were hypothetically established while utilizing the Tafel slope, the rotation speed of Co-RDE, impedance data and the pH dependence of corrosion potential. Based on the EIS data, an equivalent circuit was suggested. In addition, the electrochemical parameters for specific anodic dissolution regions were carefully measured. An induction loop in Nyquist plot measured at the open-circuit potential was observed in the low frequency, and this could be attributed to the adsorption-desorption behavior in the corrosion process.

Effects of Sputtering Pressure on the Magnetization Reversal Process and Perpendicular Magnetic Anisotropy of Co/Pd Multilayered Thin Films (스퍼터링 압력이 Co/Pd 다층박막의 자화반전 및 수직자기 이방성에 미치는 영향)

  • 오훈상;주승기
    • Journal of the Korean Magnetics Society
    • /
    • v.4 no.3
    • /
    • pp.256-262
    • /
    • 1994
  • $200{\AA}$ thick Co/Pd multilayered thin films were fabricated by sputtering. Two thicknesses of cobalt sublayer, $2{\AA}$ and $4{\AA}$ were chosen and the effects of sputtering pressure on the perpendicular magnetic anisotropy were investigated. It has been found that the optimum pressure for maximum perpendicular magnetic anisotropy(PMA) existed and the pressure for maximum PMA was lower for the multilayer with $2{\AA}$ cobalt layer than that with $4{\AA}$ cobalt thickness. As the sputtering gas presssure increased, domain wall motion with magnetization became difficult and the predominant mode of magnetization reversal changed from domain wall motion to magnetic moment rotation. It turned out that the perpendicular magnetic anisotropy was higher in case of $2{\AA}$ cobalt thickness than $4{\AA}$ cobait thickness.

  • PDF

Detection of Absolute Position of Robot Joint Using Incremental Encoders (증분형 엔코더를 이용한 로봇 관절의 절대위치 검출)

  • Lim, Jae Sik;Lee, Young Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.6
    • /
    • pp.577-582
    • /
    • 2015
  • This paper proposes an efficient detection of absolute position of a robot joint using two incremental encoders. We considers a robot joint comprising a motor, a reducer, two encoders, and a motor drive. An incremental(first) encoder provides motor's rotor position or input position of reducer while another incremental(second) encoder does output position of the reducer. A table is made where the relationship between the first and the second encoder counts is recorded. The key point is placed where the table is constructed: when a pulse occurs in the second encoder, there exists a corresponding unique count value of the first encoder. The absolute position is detected using the table by searching the second encoder position corresponding to the first encoder count value when a pulse occurs in the second encoder. The proposed method needs a small rotation, as just one second encoder's pulse angle, for the initial absolute position detection.

Geometric Nonlinear Analysis of Flexible Media Using Dynamic FEM (동적유한요소법을 이용한 유연매체의 기하비선형해석)

  • Jee, Jung-Geun;Hong, Sung-Kwon;Jang, Yong-Hoon;Park, No-Cheol;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.721-724
    • /
    • 2006
  • In the development of sheet-handling machinery, it is important to predict the static and dynamic behavior of the sheets with a high degree of reliability. Flexible media is very thin, very light and very flexible so it behaves geometric nonlinearity of large displacement and large rotation but small strain. In this paper, static and dynamic analyses of flexible media are performed by dynamic FEM considering geometric nonlinearity. Mass and tangent stiffness matrices based on the Co-rotational(CR) approach are derived and numerical simulations are performed by full Newton-Raphson(FNR) method and Newmark integration scheme.

  • PDF

Development of Analysis System for Display Characters of FPD (FPD 화상특성 평가시스템 개발)

  • 송준엽;박화영;김현종;정연욱;김용래
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.335-338
    • /
    • 2004
  • In this study has developed analysis system for automatic inspection of FPD(Flat Panel Display) characteristic, such as brightness, view angle, color ratio in the manufacturing process. Developed system consists of inspection-sensor part, acquiring a data by 3-CCD Color CCD camera and Inspection-stage part, driving a FPD holder to rotation and tilt direction. In experiment results, we could have ensured easily brightness distribution, available view angle, color reproduce and could expect to improve the quality, productivity, and yield.

  • PDF