• Title/Summary/Keyword: co-occurrence words

Search Result 74, Processing Time 0.027 seconds

Research Trend on Diabetes Mobile Applications: Text Network Analysis and Topic Modeling (당뇨병 모바일 앱 관련 연구동향: 텍스트 네트워크 분석 및 토픽 모델링)

  • Park, Seungmi;Kwak, Eunju;Kim, Youngji
    • Journal of Korean Biological Nursing Science
    • /
    • v.23 no.3
    • /
    • pp.170-179
    • /
    • 2021
  • Purpose: The aim of this study was to identify core keywords and topic groups in the 'Diabetes mellitus and mobile applications' field of research for better understanding research trends in the past 20 years. Methods: This study was a text-mining and topic modeling study including four steps such as 'collecting abstracts', 'extracting and cleaning semantic morphemes', 'building a co-occurrence matrix', and 'analyzing network features and clustering topic groups'. Results: A total of 789 papers published between 2002 and 2021 were found in databases (Springer). Among them, 435 words were extracted from 118 articles selected according to the conditions: 'analyzed by text network analysis and topic modeling'. The core keywords were 'self-management', 'intervention', 'health', 'support', 'technique' and 'system'. Through the topic modeling analysis, four themes were derived: 'intervention', 'blood glucose level control', 'self-management' and 'mobile health'. The main topic of this study was 'self-management'. Conclusion: While more recent work has investigated mobile applications, the highest feature was related to self-management in the diabetes care and prevention. Nursing interventions utilizing mobile application are expected to not only effective and powerful glycemic control and self-management tools, but can be also used for patient-driven lifestyle modification.

Real-time Knowledge Structure Mapping from Twitter for Damage Information Retrieval during a Disaster

  • Sohn, Jiu;Kim, Yohan;Park, Somin;Kim, Hyoungkwan
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.505-509
    • /
    • 2020
  • Twitter is a useful medium to grasp various damage situations that have occurred in society. However, it is a laborious task to spot damage-related topics according to time in the environment where information is constantly produced. This paper proposes a methodology of constructing a knowledge structure by combining the BERT-based classifier and the community detection techniques to discover the topics underlain in the damage information. The methodology consists of two steps. In the first step, the tweets are classified into the classes that are related to human damage, infrastructure damage, and industrial activity damage by a BERT-based transfer learning approach. In the second step, networks of the words that appear in the damage-related tweets are constructed based on the co-occurrence matrix. The derived networks are partitioned by maximizing the modularity to reveal the hidden topics. Five keywords with high values of degree centrality are selected to interpret the topics. The proposed methodology is validated with the Hurricane Harvey test data.

  • PDF

A Study on the Method of Teaching Korean Synonyms Using Online Corpora (온라인 코퍼스를 활용한 한국어 유의어 교수 방안 연구)

  • 전지은
    • Language Facts and Perspectives
    • /
    • v.47
    • /
    • pp.177-203
    • /
    • 2019
  • The purpose of this study is to suggest the possibility of using online corpora for teaching synonyms in Korean. The research included how to develop the effective concordance learning materials for teaching synonyms in Korean using data driven learning(DDL). Because synonyms are similar in meaning and usage, even native speaker can not clearly explain the difference in synonyms. Furthermore, it is not easy to provide proper example sentences for each word, and it is a reality that the differentiation of the synonyms are not sufficiently provided in the Korean textbooks. In recent years, it has been claimed that DDL helps students produce vocabulary as well as comprehend vocabulary. Nevertheless, it is hard to find how the concordance materials should be made for them. In this study, we extract concordance examples from the various kinds of online corpora; written and spoken corpora, korean textbooks, newspapers. We presented how to make corpus-designed activities using concordance materials for teaching Korean synonyms. In order to examine the effects of DDL, five experimental lessons were given to a group of 15 advanced korean learners in the university and follow-up surveys(attitude-questionnaire) were conducted. This study is meaningful in that it proposed a new teaching method in Korean synonym education.

Analysis of Descriptive Course Evaluation of University Chemistry Laboratory Class using Text Mining (텍스트 마이닝을 활용한 대학 화학 실험 수업의 서술형 강의 평가 내용 분석)

  • Yun, Jeonghyun;Park, Geumju
    • Journal of the Korean Chemical Society
    • /
    • v.66 no.3
    • /
    • pp.218-227
    • /
    • 2022
  • The purpose of this study is to analyze the opinions of students by using the text mining to the good points and improvements among the descriptive course evaluation written by the students who participated in the university chemistry laboratory class, and to derive the improvement for the class. We analyzed the frequency of occurrence, co-occurrence and network of key words. As a result of the study, in the network of good points in the class, the most frequent mentions were made between class and professor, along with explanation, understanding, student, passion, fun, TA, experiment, help, etc. In the network of improvements in the class, the most frequent mentions were made between class and student, along with professor, content, explanation, exam, wish, experiment, understanding, difficult, thought, problem, etc. In other words, the students suggested the opinion that the contents of the class were well understood and that they felt fun and satisfied with the experimental process due to 'easy and detailed explanation' and 'TA's assistance' as good points of the class. On the other hand, the students suggested the negative opinions that the understanding and concentration in the class was decreased due to 'difficulty of content and exam', 'excessive assignments', and 'class environment' as improvements of the class.

"Say Hello to Vietnam!": A Multimodal Analysis of British Travel Blogs

  • Thuy T.H. Tran
    • SUVANNABHUMI
    • /
    • v.15 no.2
    • /
    • pp.91-129
    • /
    • 2023
  • This paper reports the findings of a multimodal study conducted on 10 travel blog posts about Vietnam by seven British professional travel bloggers. The study takes a sociolinguistic view to tourism by seeing travel blogs as a source for linguistic and other semiotic materials while considering language as situated practice for the social construction of fundamental categories such as "human," "society," and "nation." It borrows concepts from Halliday's Systemic Functional Linguistics for interpersonal metafunction to develop an analytical framework to study how the co-occurrence of text and still images in these travel blog posts formulated the portrayal of Vietnam as a tourism destination and indicated the main sociolinguistic features of the blogs. The analysis of appreciation values and interactive qualities encoded in evaluative adjectives and still images show that Vietnam is generally portrayed as a country of identity and diversity. It provides tourists with positive experiences in terms of places of interest, food and local lifestyles and is cost-competitive. Strangerhood and authenticity are two outstanding sociolinguistic features exhibited in these travel blog posts. The findings of this study also underline the co-contribution of the linguistic sign, in this case evaluative adjectives, and the visual sign, in this case still images, as interpersonal meaning-making resources. To portray Vietnam, still images served as integral elements to evidence the credibility of verbal narrations. To unveil sociolinguistic characteristics of travel blogs, still images supported the linguistic realizations of authenticity and strangerhood on the posts, and in some case delivered an even stronger message than words. Not only does the study present a source of feedback from international travelers to tourism practice in Vietnam, but it also provides insights into multimodal analysis of tourism discourse which remains an under-researched area in Vietnam.

Semantic Network Analysis of Presidential Debates in 2007 Election in Korea (제17대 대통령 후보 합동 토론 언어네트워크 분석 - 북한 관련 이슈를 중심으로)

  • Park, Sung-Hee
    • Korean journal of communication and information
    • /
    • v.45
    • /
    • pp.220-254
    • /
    • 2009
  • Presidential TV debates serve as an important instrument for the general viewers to evaluate the candidates’ character, to examine their policy, and finally to make an important political decisions to cast ballots. Every words candidates utter in the course of entire election campaign exert influence of a certain significance by delivering their ideas and by creating clashes with their respective opponents. This study focuses on the conceptual venue, coined as ‘stasis’ by ancient rhetoricians, in which the clashes take place, and examines the words selection made by each candidates, the manners in which they form stasis, call for evidence, educate the public, and finally create a legitimate form of political argumentation. The study applied computer based content analysis using KrKwic and UCINET software to analyze semantic networks among the candidates. The results showed three major candidates, namely Lee Myung Bak, Jung Dong Young, and Lee Hoi Chang, displayed separate patterns in their use of language, by selecting the words that are often neglected by their opponents. Apparently, the absence of stasis and the lack of speaking mutual language significantly undermined the effects of debates. Central questions regarding issues of North Korea failed to meet basic requirements, and the respondents failed to engage in effective argumentation process.

  • PDF

Development of big data based Skin Care Information System SCIS for skin condition diagnosis and management

  • Kim, Hyung-Hoon;Cho, Jeong-Ran
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.3
    • /
    • pp.137-147
    • /
    • 2022
  • Diagnosis and management of skin condition is a very basic and important function in performing its role for workers in the beauty industry and cosmetics industry. For accurate skin condition diagnosis and management, it is necessary to understand the skin condition and needs of customers. In this paper, we developed SCIS, a big data-based skin care information system that supports skin condition diagnosis and management using social media big data for skin condition diagnosis and management. By using the developed system, it is possible to analyze and extract core information for skin condition diagnosis and management based on text information. The skin care information system SCIS developed in this paper consists of big data collection stage, text preprocessing stage, image preprocessing stage, and text word analysis stage. SCIS collected big data necessary for skin diagnosis and management, and extracted key words and topics from text information through simple frequency analysis, relative frequency analysis, co-occurrence analysis, and correlation analysis of key words. In addition, by analyzing the extracted key words and information and performing various visualization processes such as scatter plot, NetworkX, t-SNE, and clustering, it can be used efficiently in diagnosing and managing skin conditions.

The Context and Reality of Memes as Information Resources: Focused on Analysis of Research Trends in South Korea (정보자원으로서 '밈'의 맥락과 실재 - 국내 연구동향 분석을 중심으로 -)

  • Soram Hong
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.34 no.3
    • /
    • pp.227-253
    • /
    • 2023
  • The study is a preliminary study to conceptualize memes as information resources for literacy education in information environment changed with digital revolution. The study is to explain the context and reality of memes in order to promote the utilization of memes as information resources. The research questions are as follows: First, what topics are 'memes' studied with? Second, what things are captured and studied as 'memes'? The study conducted frequency and co-occurrence network analysis on 145 domestic studies and contents analysis on 73 domestic studies. The results are as follows: First, memes were mainly studied in the fields of 'humanities', 'social sciences', 'interdiciplinary studies', and 'arts and kinesiology'. Studies based on Dawkins' concept of memes (around 2012), studies on introducing the concept of memes to explain the spread of Korean Wave content (around 2015), and independent studies of memes as a major research topic in cultural sociology (around 2019) were performed. Second, memes are linguistic. Language memes (L-memes) are 102 (37%), language-visual memes (LV-memes) are 23 (8%), language-visual-musical memes (LVM-memes) are 21 (8%). Keyword 'language meme' ranked high in frequency, degree centrality and betweenness centrality of co-occurrence network. In other words, memes are expanding as a unique information phenomenon of cultural sociology based on linguistic characteristics. It is necessary to conceptualize meme literacy in terms of information literacy.

A Study on the Perception of Pit and Fissure Sealant using Unstructured Big Data (비정형 빅데이터를 이용한 치면열구전색(치아홈메우기)에 대한 인식분석)

  • Han-A Cho
    • Journal of Korean Dental Hygiene Science
    • /
    • v.6 no.2
    • /
    • pp.101-114
    • /
    • 2023
  • Background: This study aimed to explore the overall perception of pit and fissure sealants and suggest methods to revitalize their current stagnation. Methods: To determine the social perception of the change in coverage policy for pit and fissure sealants, we categorized them into five time periods. The first period (December 1, 2009 to November 30, 2010), the second period (December 1, 2010 to September 30, 2012), the third period (October 1, 2012 to May 5, 2013), the fourth period (May 6, 2013 to September 30, 2017), and the fifth period (October 1, 2017 to December 31, 2022). We utilized text mining, an unstructured big data analysis method. Keywords were collected and analyzed using Textom, and the frequency analysis of the top 30 keywords, structural features of the semantic network, centrality analysis, QAP correlation analysis, and co-occurrence analysis were conducted. Results: The frequency analysis showed that the top keywords for each time period were 'Cavities', 'Treatment', and 'Children'. In the structural features of the semantic network of pit and fissure sealants by time period, the density index was found to be around 1.00 for all time periods. The QAP correlation analysis showed the highest correlation between the first and second periods and the fourth and fifth periods with a correlation coefficient of 0.834. The co-occurrence analysis showed that 'cavities' and 'prevention were the top two words across all time periods. Conclusion: This study showed that pit and fissure sealants are well accepted by the society as a preventive treatment for caries. However, the awareness of health education related to these sealants was found to be low. Efforts to revitalize stagnant pit and fissure sealants need to be strengthened with effective education.

Simulation Nursing Education Research Topics Trends Using Text Network Analysis (텍스트네트워크분석을 적용하여 탐색한 국내 시뮬레이션간호교육 연구주제 동향)

  • Park, Chan Sook
    • Journal of East-West Nursing Research
    • /
    • v.26 no.2
    • /
    • pp.118-129
    • /
    • 2020
  • Purpose: The purpose of this study was to analyze the topic trend of domestic simulation nursing education research using text network analysis(TNA). Methods: This study was conducted in four steps. TNA was performed using the NetMiner (version 4.4.1) program. Firstly, 245 articles from 4 databases (RISS, KCI, KISS, DBpia) published from 2008 to 2018, were collected. Secondly, keyword-forms were unified and representative words were selected. Thirdly, co-occurrence matrices of keywords with a frequency of 2 or higher were generated. Finally, social network-related measures-indices of degree centrality and betweenness centrality-were obtained. The topic trend over time was visualized as a sociogram and presented. Results: 178 author keywords were extracted. Keywords with high degree centrality were "Nursing student", "Clinical competency", "Knowledge", "Critical thinking", "Communication", and "Problem-solving ability." Keywords with high betweenness centrality were "CPR", "Knowledge", "Attitude", "Self-efficacy", "Performance ability", and "Nurse." Over time, the topic trends on simulation nursing education have diversified. For example, topics such as "Neonatal nursing", "Obstetric nursing", "Pediatric nursing", "Blood transfusion", "Community visit nursing", and "Core basic nursing skill" appeared. The core-topics that emerged only recently (2017-2018) were "High-fidelity", "Heart arrest", "Clinical judgment", "Reflection", "Core basic nursing skill." Conclusion: Although simulation nursing education research has been increasing, it is necessary to continue studies on integrated simulation learning designs based on various nursing settings. Additionally, in simulation nursing education, research is required not only on learner-centered educational outcomes, but also factors that influence educational outcomes from the perspective of the instructors.