• Title/Summary/Keyword: co-evolutionary augmented lagrangian method

Search Result 4, Processing Time 0.021 seconds

Performance Comparison of CEALM and NPSOL

  • Seok, Hong-Young;Jea, Tahk-Min
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.169.4-169
    • /
    • 2001
  • Conventional methods to solve the nonlinear programming problem range from augmented Lagrangian methods to sequential quadratic programming (SQP) methods. NPSOL, which is a SQP code, has been widely used to solve various optimization problems but is still subject to many numerical problems such as convergence to local optima, difficulties in initialization and in handling non-smooth cost functions. Recently, many evolutionary methods have been developed for constrained optimization. Among them, CEALM (Co-Evolutionary Augmented Lagrangian Method) shows excellent performance in the following aspects: global optimization capability, low sensitivity to the initial parameter guessing, and excellent constraint handling capability due to the benefit of the augmented Lagrangian function. This algorithm is ...

  • PDF

Performance Comparison of 3-D Optimal Evasion against PN Guided Defense Missiles Using SQP and CEALM Optimization Methods (SQP와 CEALM 최적화 기법에 의한 대공 방어 유도탄에 대한 3차원 최적 회피 성능 비교)

  • Cho, Sung-Bong;Ryoo, Chang-Kyung;Tahk, Min-Jea
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.272-281
    • /
    • 2009
  • In this paper, three-dimensional optimal evasive maneuver patterns for air-to-surface attack missiles against proportionally navigated anti-air defense missiles were investigated. An interception error of the defense missile is produced by an evasive maneuver of the attack missile. It is assumed that the defense missiles are continuously launched during the flight of attack missile. The performance index to be minimized is then defined as the negative square integral of the interception errors. The direct parameter optimization technique based on SQP and a co-evolution method based on the augmented Lagrangian formulation are adopted to get the attack missile's optimal evasive maneuver patterns. The overall shape of the resultant optimal evasive maneuver is represented as a deformed barrel-roll.

Robust Gain Scheduling Based on Fuzzy Logic Control and LMI Methods (퍼지논리제어와 LMI기법을 이용한 강인 게인 스케줄링)

  • Chi, Hyo-Seon;Koo, Kuen-Mo;Lee, Hungu;Tahk, Min-Jea;Hong, Sung-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.1
    • /
    • pp.1162-1170
    • /
    • 2001
  • This paper proposes a practical gain-scheduling control law considering robust stability and performance of Linear Parameter Varying(LPV) systems in the presence of nonlinearities and uncertainties. The proposed method introduces LMI-based pole placement synthesis and also associates with a recently developed fuzzy control system based on Takagei-Sugenos fuzzy model. The sufficient conditions for robust controller design of linearized local dynamics and robust stabilization of fuzzy control systems are reduced to a finite set of Linear Matrix inequalities(LMIs) and solved by using co-evolutionary algorithms. The proposed method is applied to the longitudinal acceleration control of high performance aircraft with linear and nonlinear simulations.

  • PDF

Integrated Roil-Pitch-Yaw Autopilot Design for Missiles

  • Kim, Yoon-Hwan;Won, Dae-Yeon;Kim, Tae-Hun;Tahk, Min-Jea;Jun, Byung-Eul;Lee, Jin-Ik;An, Jo-Young
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.1
    • /
    • pp.129-136
    • /
    • 2008
  • An roll-pitch-yaw integrated autopilot for missiles is designed for compensation of dynamics coupling. The proposed autopilot is based on the classical control technique. The gains of the proposed autopilot are optimized by using co-evolutionary augmented Lagrangian method(CEALM). Several cost functions are compared in order to find feasible control gains. For a case that a bank angle of missiles is unknown, multiple models are used in the autopilot optimization. In nonlinear simulations as well as linear simulations, the proposed autopilot provided good performances.