• Title/Summary/Keyword: co-cycle

Search Result 1,794, Processing Time 0.025 seconds

Investigation of cure cycle for co-cured metal/composite hybrid structures without fabricating thermal residual stress (동시경화 하이브리드 금속/복합재료 구조물의 제조 잔류 열응력 제거를 위한 경화사이클에 관한 연구)

  • Kim Hak Sung;Park Sang Wook;Lee Dai Gil
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.83-87
    • /
    • 2004
  • In this work, the cure cycle of co-cured metal/composite structure was investigated to decrease fabricating thermal residual stresses between the metal and the composite material. DSC (Differential scanning calorimetry) experiment and static lap shear test of co-cured aluminum/composite double lap joint as well as the curvature experiment of co-cured steel/composite strip were performed to investigate the effect of curing cycle on the thermal residual stress of co-cured hybrid structures. From the experiments, it was found that post curing method after abrupt cooling of co-cured aluminum/composite hybrid structure at certain point of degree of cure during curing process could eliminate fabricating the thermal residual stresses.

  • PDF

Analysis on Co-use Parameter in TV Band Using a Transmisssion Probability Concept of Interfering Transmitter (간섭 송신기의 전송확률 개념을 이용한 방송대역 공용 파라미터 분석)

  • Cho, Ju-Phil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.8
    • /
    • pp.1587-1592
    • /
    • 2012
  • Analysis on co-use parameters in TV frequency channels is essential to utilize a TV White Space(TVWS) efficiently. A transmission probability of interfering transmitter can be used as some criteria for performance evaluation of the systems that co-use the cochannels. We considered a duty cycle as a parameter for getting the method how heterogeneous systems can use simultaneously a co-channel in TVWS. We analyze the transmission probability of interfering transmitter with an assumption that the probability is the same as the duty cycle, a time that it spends in an active state as a fraction of the total under consideration. In order to make an analysis of relationship between duty cycle and performances of two systems. We take into consideration on the case that WLAN is an victim receiver and WiBro is a interfering transmitter. Analyzed coexistence results may be widely applied into the technique developed to get the coexisting condition for wireless devices using many communication protocols in same frequency.

Effect on Heat Exchangers Efficiency on Performance of Cryogenic Refrigeration Cycles (열교환기 효율이 초저온 냉동사이클 성능에 미치는 영향)

  • Yoon, Jung-In
    • Journal of Power System Engineering
    • /
    • v.17 no.4
    • /
    • pp.58-63
    • /
    • 2013
  • This paper presents the new cascade liquefaction cycles using $CO_2-C_2H_6-N_2$ and $CO_2-N_2O-N_2$. The performance of the cascade liquefaction cycles with respect to temperature differences in the LNG heat exchangers is analyzed using HYSYS software and then compared the performance of these cycles with phillips optimized cascade liquefaction cycle. The coefficient of performance of the new liquefaction cycles considered in this study decreases with the temperature differences in the LNG heat exchangers, but the compressor work, expander work and heat capacity in the LNG heat exchanger increases, respectively. From the comparison of performance of three cycles, the cascade liquefaction cycles using $CO_2-C_2H_6-N_2$ showed the highest COP. And the cycles using $CO_2-C_2H_6-N_2$ and $CO_2-N_2O-N_2$ presented the second and third highest COP, respectively. In the view of performance, the optimized cascade liquefaction cycle using $C_3H_8-C_2H_4-C_1H_4$ yields much better COP. But, in the environment view, it is found that the cascade liquefaction cycle using $CO_2-C_2H_6-N_2$ shows favorable characteristics.

Design of a direct-cycle supercritical CO2 nuclear reactor with heavy water moderation

  • Petroski, Robert;Bates, Ethan;Dionne, Benoit;Johnson, Brian;Mieloszyk, Alex;Xu, Cheng;Hejzlar, Pavel
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.877-887
    • /
    • 2022
  • A new reactor concept is described that directly couples a supercritical CO2 (sCO2) power cycle with a CO2-cooled, heavy water moderated pressure tube core. This configuration attains the simplification and economic potential of past direct-cycle sCO2 concepts, while also providing safety and power density benefits by using the moderator as a heat sink for decay heat removal. A 200 MWe design is described that heavily leverages existing commercial nuclear technologies, including reactor and moderator systems from Canadian CANDU reactors and fuels and materials from UK Advanced Gas-cooled Reactors (AGRs). Descriptions are provided of the power cycle, nuclear island systems, reactor core, and safety systems, and the results of safety analyses are shown illustrating the ability of the design to withstand large-break loss of coolant accidents. The resulting design attains high efficiency while employing considerably fewer systems than current light water reactors and advanced reactor technologies, illustrating its economic promise. Prospects for the design are discussed, including the ability to demonstrate its technologies in a small (~20 MWe) initial system, and avenues for further improvement of the design using advanced technologies.

DEVELOPMENT OF A SIMPLIFIED MODEL FOR ANALYZING THE PERFORMANCE OF KALIMER-600 COUPLED WITH A SUPERCRITICAL CARBON DIOXIDE BRAYTON ENERGY CONVERSION CYCLE

  • Seong, Seung-Hwan;Lee, Tae-Ho;Kim, Seong-O
    • Nuclear Engineering and Technology
    • /
    • v.41 no.6
    • /
    • pp.785-796
    • /
    • 2009
  • A KALIMER-600 concept which is a type of sodium-cooled fast reactor, has been developed at KAERI. It uses sodium as a primary coolant and is a pool-type reactor to enhance safety. Also, a supercritical carbon dioxide ($CO_2$) Brayton cycle is considered as an alternative to an energy conversion system to eliminate the sodium water reaction and to improve efficiency. In this study, a simplified model for analyzing the thermodynamic performance of the KALIMER-600 coupled with a supercritical $CO_2$ Brayton cycle was developed. To develop the analysis model, a commercial modular modeling system (MMS) was adopted as a base engine, which was developed by nHance Technology in USA. It has a convenient graphical user interface and many component modules to model the plant. A new user library for thermodynamic properties of sodium and supercritical $CO_2$ was developed and attached to the MMS. In addition, some component modules in the MMS were modified to be appropriate for analysis of the KALIMER-600 coupled with the supercritical $CO_2$ cycle. Then, a simplified performance analysis code was developed by modeling the KALIMER-600 plant with the modified MMS. After evaluating the developed code with each component data and a steady state of the plant, a simple power reduction and recovery event was evaluated. The results showed an achievable capability for a performance analysis code. The developed code will be used to develop the operational strategy and some control logics for the operation of the KALIMER-600 with a supercritical $CO_2$ Brayton cycle after further studies of analyzing various operational events.

COVID-19 (SARS-CoV-2) mRNA vaccination does not affect basal sex hormone levels (follicle-stimulating hormone, luteinizing hormone, estradiol) in reproductive-age women

  • Haeng Jun Jeon;Woo Sik Lee;Ji Eun Park;Ji Young Hwang;Ji Won Kim
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.51 no.2
    • /
    • pp.151-157
    • /
    • 2024
  • Objective: People vaccinated with the coronavirus disease 2019 (COVID-19) (severe acute respiratory syndrome coronavirus-2 [SARS-CoV-2]) mRNA vaccine have reported experiencing various adverse effects. For instance, reproductive-age women have presented with complaints of abnormal uterine bleeding or menstrual cycle changes. We speculated that differences in basal sex hormone levels before and after vaccination may be present in women who experienced irregular bleeding or menstrual cycle changes; thus, this study aimed to investigate the differences in basal sex hormone levels of women before and after two doses of SARS-CoV-2 mRNA vaccination. Methods: This retrospective study included patients who received SARS-CoV-2 mRNA vaccines between January 2021 and February 2022 at a single center. In an outpatient setting, patients were queried regarding their menstrual cycle, the date of SARS-CoV-2 mRNA vaccination, vaccination type, and vaccination side effects. Differences in basal hormone levels (menstrual cycle days 2-3, follicle-stimulating hormone [FSH], luteinizing hormone [LH], and estradiol) before and after vaccination were compared. Results: Among the 326 patients, patients with no laboratory records of the hormones were excluded. The median time interval between SARS-CoV-2 mRNA vaccination and the laboratory test day was 79 days (interquartile range, 44 to 127). A comparative analysis of these hormones before and after vaccination revealed no significant differences. Subgroup analyses based on age and reported adverse events also found no statistically significant differences. Conclusion: This study showed no significant differences in basal hormone levels (FSH, LH, and estradiol) before and after SARS-CoV-2 mRNA vaccination.

Analysis on Co-use Performance of System according to Duty Cycle of Interfering Transmitter Signal (간섭 송신기 신호 duty cycle에 따른 시스템 공유 성능 분석)

  • Cho, Ju-Phil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.2
    • /
    • pp.222-227
    • /
    • 2012
  • In this paper, we analyze the total performance according to duty cycle of interfering transmitter in hetero systems. We analyze this criteria as a parameter for co-use when hetero systems share the same frequency channels. In order to make an analysis of relationship between duty cycle and performances of two systems. We take into consideration on the case that WiBro is an victim receiver and WLAN is a interfering transmitter. Analyzed coexistence results may be widely applied into the technique developed to get the coexisting condition for wireless devices using many communication protocols in same frequency.

A Study on the Calculation Process of Carbon Dioxide Emission for Buildings with Life Cycle Assessment (건축물 생애과정에서의 이산화탄소 배출량 계산 프로세스에 관한 연구)

  • Jeong, Young-Sun;Huh, Jung-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.1
    • /
    • pp.23-30
    • /
    • 2011
  • International cooperation to reduce greenhouse gas emissions is expected to provide a big crisis and a great opportunity at the same time for our industry that heavily consumes energy. To cope actively with the international environmental regulation, such as the Framework Convention on Climate Change, quantitative measurement of the volume of greenhouse gases emitted by various industries and quantitative prediction of the greenhouse gas emissions of the future are becoming more important than anything else at the national level. This study aims to propose the calculation process of carbon dioxide($CO_2$) emission for building in life cycle. This paper describes and compares 9 different tool for environmental load estimation with LCA. This study proposed the calculation process for quantitatively predicting and assessing $CO_2$ emissions during the life cycle of buildings based on the life cycle assessment(LCA). The life cycle steps of buildings were divided into the design/supervision, new construction, repair, renovation, use of operating energy in buildings, maintenance, and reconstruction stage in the life cycle inventory analysis and the method of assessing the environmental load in each stage was proposed.

ASSESSMENT OF GAS COOLED FAST REACTOR WITH INDIRECT SUPERCRITICAL $CO_2$ CYCLE

  • Hejzlar, P.;Dostal, V.;Driscoll, M.J.;Dumaz, P.;Poullennec, G.;Alpy, N.
    • Nuclear Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.109-118
    • /
    • 2006
  • Various indirect power cycle options for a helium cooled gas cooled fast reactor (GFR) with particular focus on a supercritical $CO_2(SCO_2)$ indirect cycle are investigated as an alternative to a helium cooled direct cycle GFR. The balance of plant (BOP) options include helium-nitrogen Brayton cycle, supercritical water Rankine cycle, and $SCO_2$ recompression Brayton power cycle in three versions: (1) basic design with turbine inlet temperature of $550^{\circ}C$, (2) advanced design with turbine inlet temperature of $650^{\circ}C$ and (3) advanced design with the same turbine inlet temperature and reduced compressor inlet temperature. The indirect $SCO_2$ recompression cycle is found attractive since in addition to easier BOP maintenance it allows significant reduction of core outlet temperature, making design of the primary system easier while achieving very attractive efficiencies comparable to or slightly lower than, the efficiency of the reference GFR direct cycle design. In addition, the indirect cycle arrangement allows significant reduction of the GFR &proximate-containment& and the BOP for the $SCO_2$ cycle is very compact. Both these factors will lead to reduced capital cost.