• Title/Summary/Keyword: co-cycle

Search Result 1,786, Processing Time 0.032 seconds

A Study on the Engineering Design for 20kW-Grade Waste Gas Heat Recovery (20kW급 폐열회수 시스템 공정 설계에 관한 연구)

  • Kim, Kyoung Su;Bang, Se Kyoung;Jeong, Eun Ik;Yi, Chung Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.4
    • /
    • pp.91-96
    • /
    • 2018
  • This study is collects design data through the process design of the organic Rankine cycle, which can produce 20kW of electric power through the recovery of waste heat. In this study, the simulation was conducted by using APSEN HYSYS in order to make the model for the process design of the 20kW class waste heat recovery system. For the thermodynamic model, the test was conducted with hot water as the heat source, with the water steam used as the cooling water for the cooler and the refrigerant R245fa in the cycle. In Case 1 and Case 2, it was expected and found that the cycle efficiency was 10.6% and that 36.86kw was produced, considering the margin of 84% of 20kW. In Case 3 and Case 4, it was expected and found from the simulation that the cycle efficiency was 12% and that 30.0kw was produced, considering the margin of 84% of 20kW.

A cycle simulation of the S.I. engine and it's verification test (S.I. 엔진의 사이클 시뮬레이션 및 이의 확인 실험)

  • 목희수;김승수
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.72-84
    • /
    • 1988
  • Engine performance is one of the main objectives specified at the beginning of a new engine design project. The cycle simulation for SI engine is based on the zero-dimensional gas exchange model and a heat release expression by Viebe. This program also requires minimum input data and takes only a short time to run. Heat transfer from cylinder transfer formula. The flow coefficient (effective area) is calculated from valve lift using the standard flow coefficient curve and engine friction is calculated from the Millington and Hartles' engine friction formula. The chemical species considered in burned gas are 6 species CO, CO, H$_{2}$, H$_{2}$O, $O_{2}$, N$_{2}$ and the cylinder pressure, homogeneous cylinder temperature, gas composition and burned fraction are calculated at each crank angle through the cycle. To check the validity and accuracy, experimental study was done with 3 engines for measuring cylinder pressure, indicated mean effective pressure, brake mean effective pressure and air flow rate, etc. Despite its simple assumptions, cycle simulation showes excellent breathing and performance correlation when compared with data of tested engines, and have been proved useful in engine design.

  • PDF

A Study on Analysis and Assessment of the LCCO2 Emissions for Building Construction by Using the Life Cycle Assessment Methodology (전과정평가 방법론을 이용한 건물의 전과정 탄소 배출량 평가 및 분석에 관한 연구)

  • Cho, Su-Hyun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.259-260
    • /
    • 2016
  • Recently, world-wide focusing on the interest for the reduction of greenhouse gas emissions associated with climate change and global warming, South Korea also has set up a national greenhouse gas reduction target and action plans seeking to achieve them. In particular, in the construction area, to encourage green building certification of the building and carbon labeling acquisition of building products, in order to reduce the environmental impact caused by the industrial activities have been in steady efforts. Therefore, this study estimates the life cycle carbon footprint of building construction materials applied to carbon emissions reduction technology and analyzes the results. Through the CO2 emissions analysis in construction phase and maintenance phase of the building, it provides basic resource for future research expansion and establishes a step-by-step whole life cycle carbon emissions reduction plan in new construction and existing buildings.

  • PDF

Greenhouse Gas Emission Analysis by LNG Fuel Tank Size through Life Cycle

  • Park, Eunyoung;Choi, Jungho
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.393-402
    • /
    • 2021
  • As greenhouse gas emissions from maritime transport are increasing, the International Maritime Organization is continuously working to strengthen emission regulations. Liquefied natural gas (LNG) fuel is less advantageous as a point of CO2 reduction due to the methane leakage that occurs during the bunkering and operation of marine engines. In this study, greenhouse gas emissions from an LNG-fueled ship were analyzed from the perspective of the life cycle. The amount ofmethane emission during the bunkering and operation procedures with various boil-off gas (BOG) treatment methods and gas engine specifications was analyzed by dynamic simulation. The results were also compared with those of other liquid fuel engines. As a result, small LNG-fueled ships without a BOG treatment facility emitted 32% more greenhouse gas than ships utilizing marine gas oil or heavy fuel oil. To achieve a greenhouse gas reduction via a BOG treatment method, a gas combustion unit or re-liquefaction system must be mounted, which results in a greenhouse gas reduction effect of about 25% and 30%. As a result of comparing the amount of greenhouse gas generated according to the BOG treatment method used with each tank size from the perspective of the operating cycle with the amounts from using existing marine fuels, the BOG treatment method showed superior effects of greenhouse gas reduction.

Compression Power and Exergy Analysis in a Dry Ice Production Cycle with 3-stage Compression (3단압축 드라이아이스 제조사이클의 압축동력과 엑서지 해석)

  • 이근식
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.6
    • /
    • pp.550-560
    • /
    • 2000
  • In order to minimize compression power and analyze the cause of exergy loss for a dry ice production cycle with 3-stage compression, the variation of compression power was investigated and the exergy analysis was peformed for the cycle. In this cycle, $CO_2$, is used both as a refrigerant and as a raw material for dry ice. The behavior of compression power and irreversibility in the cycle were examined as a function of intermediate pressure. From this result, the conditions for the minimum compression power were obtained in terms of the first stage or the third stage pressure. In addition, the irreversibilities for the cycle were investigated with respect to the efficiency of compressor. Result shows that the optimum pressure is not consistent with the conventional pressure obtained from the equal-pressure-ratio assumption. This is mainly due to the change in mass flow rate of the intermediate stage compressor by the flash gas evaporation from the flash drums. Most important is that the present exergy analysis enabled us to find bad performance components for the cycle and informed us of methods to improve the cycle performance.

  • PDF

Inhibition of poly 3-hydroxybutyrate (PHB) synthesis by phaR deletion in Methylobacterium extorquens AM1 (메탄올자화균 Methylobacterium extorquens AM1의 phaR 유전자 결실을 통한 poly 3-hydroxybutyrate (PHB) 생합성 억제)

  • Kim, Yujin;Lee, Kwanghyun;Kim, Hyeonsoo;Cho, Sukhyeong;Lee, Jinwon
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.363-368
    • /
    • 2017
  • Methylotrophy is able to use reduced one-carbon compound, such as methanol and methylamine, as a sole carbon source. Methylobacterium extorquens AM1 is the most extensively studied methylotroph utilizing serine-isocitrate lyase cycle. Because the Poly 3-hydroxybutyrate (PHB) synthesis pathway in M. extorquens AM1 is likely to interlink with EMCP (ethylmalonyl-CoA pathway), glyoxylate, and TCA cycles, regulation of PHB production is needed to produce EMCP-derived acid or TCA acids. To adjust carbon flux to PHB production, PhaR, which seems to have function of regulator of PHB synthesis and acetyl-CoA flux, was knocked out in M. extorquens AM1 by using markerless gene deletion methods. As a result, PHB granules were remarkably reduced in the knockout strain ${\Delta}phaR$ compared to parental strain. Although lag phase was extended for 12h, ${\Delta}phaR$ showed similar cell growth and methanol consumption rate compared to wild type.

The Hsp90 chaperone machinery: from structure to drug development

  • Hahn, Ji-Sook
    • BMB Reports
    • /
    • v.42 no.10
    • /
    • pp.623-630
    • /
    • 2009
  • Hsp90, an evolutionarily conserved molecular chaperone, is involved in the folding, stabilization, activation, and assembly of a wide range of 'client' proteins, thus playing a central role in many biological processes. Especially, several oncoproteins act as Hsp90 client proteins and tumor cells require higher Hsp90 activity than normal cells to maintain their malignancy. For this reason, Hsp90 has emerged as a promising target for anti-cancer drug development. It is still largely unknown how Hsp90 can recognize structurally unrelated client proteins. However, recent progress in structural studies on Hsp90 and its interaction with various co-chaperones has broadened our knowledge of how the Hsp90 ATPase activity, which is essential for its chaperone function, is regulated and coupled with the conformational changes of Hsp90 dimer. This review focuses on the roles of various Hsp90 co-chaperones in the regulation of the Hsp90 ATPase cycle, as well as in the selection of client proteins. In addition, the current development of Hsp90 inhibitors based on the structural information will be discussed.

Verification and Development of Simulation Model for Fuel Consumption Calculation between ICEV and PHEV (자동차 동력원별(ICEV, PHEV) 연비산출 모델개발 및 이의 검증)

  • Kim, J.W.;Park, J.M.;Kim, T.K.;Lee, J.W.
    • Journal of ILASS-Korea
    • /
    • v.22 no.2
    • /
    • pp.47-54
    • /
    • 2017
  • $CO_2$ emission regulation will be prescribed and main issue in automotive industry. Mostly, vehicle's fuel efficiency deeply related to $CO_2$ emission is regulated by qualified driving test cycle by using chassis dynamometer and exhaust gas analyser. But, real driving fuel consumption rate depends so much on the individual usage profile and where it is being driven: city traffic, road conditions. In this study, vehicle model of fuel consumption rate for ICEV and PHEV was developed through co-simulation with CRUISE model and Simulink based on driving control model. The simulation results of fuel consumption rate were analysed with on-road vehicle data and compared with its official level.

Thermal Behavior of (Co0.5 Mn0.5)Fe2O4 for Hydrogen Generation by Thermochemical Cycle (열화학 사이클 H2 제조를 위한 (Co0.5 Mn0.5)Fe2O4의 열적 거동)

  • Shin, H.C.;Choi, S.C.;Kim, C.S.;Kim, J.W.;Joo, O.S.;Jung, K.D.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.2
    • /
    • pp.143-150
    • /
    • 2002
  • The thermal behavior of $(Co_{0.5}\;Mn_{0.5})Fe_2O_4$ prepared by a co-precipitation wasinvestigated for Hz generation by the thermochemical cycle. The reduction reaction of $(Co_{0.5}\;Mn_{0.5})Fe_2O_4$ started from $480^{\circ}C$, and the weight loss was 1.6 wt% up to $1100^{\circ}C$. At this reaction, $(Co_{0.5}\;Mn_{0.5})Fe_2O_4$ was reduced by release of oxygen bonded with the $Fe^{3+}$ ion in the B site of ($CO_{0.5}$ $(Co_{0.5}\;Mn_{0.5})Fe_2O_4$. In the $H_2O$ decomposition reaction, $H_2$ was generated by oxidationof reduced $(Co_{0.5}\;Mn_{0.5})Fe_2O_4$. The crystal structure of $(Co_{0.5}\;Mn_{0.5})Fe_2O_4$ for reduction reaction maintained spinel structure and the lattice constant of $(Co_{0.5}\;Mn_{0.5})Fe_2O_4$ ($8.41\AA$) was enlarged to $8.45\AA$. But the lattice constant of $(Co_{0.5}\;Mn_{0.5})Fe_2O_4$ after $H_2O$ decomposition reaction did not change to $8.45\AA$. Then, $(Co_{0.5}\;Mn_{0.5})Fe_2O_4$ is excellent material in the thermochemical cyclic reaction due to release oxygen at low temperature for the reduction reaction and produce $H_2$ maintaining crystal structure for redox reaction.

A Study on the Improvement of Potassium Based Sorbent for Flue Gas Carbon Dioxide(CO2) (배가스 이산화탄소(CO2)용 Potassium계 흡수제의 성능 향상 연구)

  • Wi, Young Ho;Ryu, Chong Kul;Choi, Dong Hyeok
    • Journal of Climate Change Research
    • /
    • v.2 no.2
    • /
    • pp.107-113
    • /
    • 2011
  • In this research, we described the experimental results for the improvement of Potassium based sorbents. These sorbents have been actually used in the 0.5 MW $CO_2$ capture plant located in Hadong #3 Power Plant. Firstly, we had shaped two kinds of sorbents using a spray dryer. These sorbents applied magnetite & copper oxide as an additive. And the magnetite sorbent was evaluated more excellent relatively in the attrition index. Secondly, We had obtained TGA multicycle experimental results of the improved Potassium based sorbent which applied magnetite as an additive. Consequently, $CO_2$ sorption capacity had been sustained 5.5 wt% after 2nd cycle and attrition index was very excellent as 0.5%. Finally, we had investigated the characteristics of the sorbent following in properties of supporters. As a result, the sorption capacity of the KMO sorbent used base material as a supporter was appeared as 7.2 wt%.