• Title/Summary/Keyword: co-classification

Search Result 756, Processing Time 0.029 seconds

Terrain Classification Using Three-Dimensional Co-occurrence Features (3차원 Co-occurrence 특징을 이용한 지형분류)

  • Jin Mun-Gwang;Woo Dong-Min;Lee Kyu-Won
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.1
    • /
    • pp.45-50
    • /
    • 2003
  • Texture analysis has been efficiently utilized in the area of terrain classification. In this application features have been obtained in the 2D image domain. This paper suggests 3D co-occurrence texture features by extending the concept of co-occurrence to 3D world. The suggested 3D features are described using co-occurrence histogram of digital elevations at two contiguous position as co-occurrence matrix. The practical construction of co-occurrence matrix limits the number of levels of digital elevation. If the digital elevation is quantized into the number of levels over the whole DEM(Digital Elevation Map), the distinctive features can not be obtained. To resolve the quantization problem, we employ local quantization technique which preserves the variation of elevations. Experiments has been carried out to verify the proposed 3D co-occurrence features, and the addition of the suggested features significantly improves the classification accuracy.

Identifying Core Robot Technologies by Analyzing Patent Co-classification Information

  • Jeon, Jeonghwan;Suh, Yongyoon;Koh, Jinhwan;Kim, Chulhyun;Lee, Sanghoon
    • Asian Journal of Innovation and Policy
    • /
    • v.8 no.1
    • /
    • pp.73-96
    • /
    • 2019
  • This study suggests a new approach for identifying core robot tech-nologies based on technological cross-impact. Specifically, the approach applies data mining techniques and multi-criteria decision-making methods to the co-classification information of registered patents on the robots. First, a cross-impact matrix is constructed with the confidence values by applying association rule mining (ARM) to the co-classification information of patents. Analytic network process (ANP) is applied to the co-classification frequency matrix for deriving weights of each robot technology. Then, a technique for order performance by similarity to ideal solution (TOPSIS) is employed to the derived cross-impact matrix and weights for identifying core robot technologies from the overall cross-impact perspective. It is expected that the proposed approach could help robot technology managers to formulate strategy and policy for technology planning of robot area.

Co-Classification Analysis of Inter-disciplinarity on Solar Cell Research (Co-Classification 방법을 이용한 태양전지 연구의 학제간 다양성 분석)

  • Kim, Min-Ji;Park, Jung-Kyu;Lee, You-Ah;Heo, Eun-Nyeong
    • New & Renewable Energy
    • /
    • v.7 no.1
    • /
    • pp.36-44
    • /
    • 2011
  • Technology is developed from the efficient interaction with other technology files while building up its own research field. This study analyzes the structure of solar cell research area and describes its paths of the technology development in terms of interdisciplinary diversity using the Co-Classification method during 1979-2009. As a results, 1,380 studies are determined as the interdisciplinary among the 2,605 studies. It shows that 52.98% of the solar cell researches have interdisciplinary relationships with two or more research fields. In addition, we show that the research area of solar cell technology is composed by Material Science, Multidisciplinary and Energy & Fuel, Physics, Applied, Chemistry, Physical from the Co-Classification matrix and network analysis. It means the complexity of the technological knowledge production increased with the concept of interdisciplinary. The results can be used for the planning of the efficient solar cell technology development.

Damage classification of concrete structures based on grey level co-occurrence matrix using Haar's discrete wavelet transform

  • Kabir, Shahid;Rivard, Patrice
    • Computers and Concrete
    • /
    • v.4 no.3
    • /
    • pp.243-257
    • /
    • 2007
  • A novel method for recognition, characterization, and quantification of deterioration in bridge components and laboratory concrete samples is presented in this paper. The proposed scheme is based on grey level co-occurrence matrix texture analysis using Haar's discrete wavelet transform on concrete imagery. Each image is described by a subset of band-filtered images containing wavelet coefficients, and then reconstructed images are employed in characterizing the texture, using grey level co-occurrence matrices, of the different types and degrees of damage: map-cracking, spalling and steel corrosion. A comparative study was conducted to evaluate the efficiency of the supervised maximum likelihood and unsupervised K-means classification techniques, in order to classify and quantify the deterioration and its extent. Experimental results show both methods are relatively effective in characterizing and quantifying damage; however, the supervised technique produced more accurate results, with overall classification accuracies ranging from 76.8% to 79.1%.

Plain Fingerprint Classification Based on a Core Stochastic Algorithm

  • Baek, Young-Hyun;Kim, Byunggeun
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.1
    • /
    • pp.43-48
    • /
    • 2016
  • We propose plain fingerprint classification based on a core stochastic algorithm that effectively uses a core stochastic model, acquiring more fingerprint minutiae and direction, in order to increase matching performance. The proposed core stochastic algorithm uses core presence/absence and contains a ridge direction and distribution map. Simulations show that the fingerprint classification accuracy is improved by more than 14%, on average, compared to other algorithms.

A Co-training Method based on Classification Using Unlabeled Data (비분류표시 데이타를 이용하는 분류 기반 Co-training 방법)

  • 윤혜성;이상호;박승수;용환승;김주한
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.8
    • /
    • pp.991-998
    • /
    • 2004
  • In many practical teaming problems including bioinformatics area, there is a small amount of labeled data along with a large pool of unlabeled data. Labeled examples are fairly expensive to obtain because they require human efforts. In contrast, unlabeled examples can be inexpensively gathered without an expert. A common method with unlabeled data for data classification and analysis is co-training. This method uses a small set of labeled examples to learn a classifier in two views. Then each classifier is applied to all unlabeled examples, and co-training detects the examples on which each classifier makes the most confident predictions. After some iterations, new classifiers are learned in training data and the number of labeled examples is increased. In this paper, we propose a new co-training strategy using unlabeled data. And we evaluate our method with two classifiers and two experimental data: WebKB and BIND XML data. Our experimentation shows that the proposed co-training technique effectively improves the classification accuracy when the number of labeled examples are very small.

Naive Bayes classifiers boosted by sufficient dimension reduction: applications to top-k classification

  • Yang, Su Hyeong;Shin, Seung Jun;Sung, Wooseok;Lee, Choon Won
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.5
    • /
    • pp.603-614
    • /
    • 2022
  • The naive Bayes classifier is one of the most straightforward classification tools and directly estimates the class probability. However, because it relies on the independent assumption of the predictor, which is rarely satisfied in real-world problems, its application is limited in practice. In this article, we propose employing sufficient dimension reduction (SDR) to substantially improve the performance of the naive Bayes classifier, which is often deteriorated when the number of predictors is not restrictively small. This is not surprising as SDR reduces the predictor dimension without sacrificing classification information, and predictors in the reduced space are constructed to be uncorrelated. Therefore, SDR leads the naive Bayes to no longer be naive. We applied the proposed naive Bayes classifier after SDR to build a recommendation system for the eyewear-frames based on customers' face shape, demonstrating its utility in the top-k classification problem.

A study on classification of weld quality in high tensile TRIP steel welding for automotive using $CO_2$ laser ($CO_2$ 레이저를 이용한 자동차용 고장력 TRIP 강 용접의 용접부 품질 분류에 대한 연구)

  • 박영환;박현성;이세헌
    • Laser Solutions
    • /
    • v.5 no.3
    • /
    • pp.21-30
    • /
    • 2002
  • In automotive industry, the studies about light weight vehicle and improving the productivity have been accomplished. For that, TRIP steel was developed and research for the laser welding process have been performed. In this study, the monitoring system using photodiode was developed for laser welding process of TRIP steel. With measuring light, neural network model for estimating bead width and tensile strength was made and weld quality classification algorithm was formulated with fuzzy inference method.

  • PDF

A proposal of seismic reference velocity ratio for the rock mass classification in tunnel area (터널구간 암반분류를 위한 탄성파 기준속도비의 제안)

  • Ko, Kwang-Beom;Ha, Hee-Sang;Lim, Hae-Ryong
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.09a
    • /
    • pp.37-42
    • /
    • 2005
  • Remote seismic tomography is regarded as one of the most valuable geophysical technique for the estimation of the rock mass classification in the tunnel area where hard data information such as drill logs are absent. But the results of rock mass classification based on the remote seismic tomography tend to be overestimated in practice. In this study, we propose the effective method to implement the seismic reference velocity ratio based on semblance for the improvement of rock mass classification. Also, to verify its feasibility, proposed technique was tested by using the real field data.

  • PDF

User Interface Application for Cancer Classification using Histopathology Images

  • Naeem, Tayyaba;Qamar, Shamweel;Park, Peom
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.17 no.2
    • /
    • pp.91-97
    • /
    • 2021
  • User interface for cancer classification system is a software application with clinician's friendly tools and functions to diagnose cancer from pathology images. Pathology evolved from manual diagnosis to computer-aided diagnosis with the help of Artificial Intelligence tools and algorithms. In this paper, we explained each block of the project life cycle for the implementation of automated breast cancer classification software using AI and machine learning algorithms to classify normal and invasive breast histology images. The system was designed to help the pathologists in an automatic and efficient diagnosis of breast cancer. To design the classification model, Hematoxylin and Eosin (H&E) stained breast histology images were obtained from the ICIAR Breast Cancer challenge. These images are stain normalized to minimize the error that can occur during model training due to pathological stains. The normalized dataset was fed into the ResNet-34 for the classification of normal and invasive breast cancer images. ResNet-34 gave 94% accuracy, 93% F Score, 95% of model Recall, and 91% precision.