• Title/Summary/Keyword: co occurrence

Search Result 1,063, Processing Time 0.032 seconds

Comparison on the Time of Occurrence of Major Rice Insect Pests Based on Growing Degree Day in Northern Part of Korean Peninsula (북방농업지대에서 유효적산온도를 이용한 벼 해충의 발생시기 비교)

  • Kim, Soon-Il;Uhm, Ki Baik;Jin, Da-Yong;Park, Hyung Man
    • Korean journal of applied entomology
    • /
    • v.58 no.3
    • /
    • pp.239-249
    • /
    • 2019
  • This study was carried out to compare on the time of occurrence of 6 major rice insect pests [Lissorhoptrus oryzophilus Kusche, Oulema oryzae Kuwayama, Sogatella furcifera (Horvath), Nilaparvata lugens Stal., Cnaphalocrocis medinalis (Guenee), Mythimna separata Walker] in northern part of the Korean peninsula. Using growing degree days of the insects, we evaluated the number of occurrence generations and the time of occurrence. Over-wintering insects such as L. oryzophilus and O. oryzae showed different occurrence periods in northern regions. The occurrence period of the first generation adults was later in northeast regions than in Korean middle regions and more later both in northern alpines and in northern parts of east sea. In addition, the first adults of S. furcifera, N. lugens, C. medinalis, and M. separata occurred between June and early August. However, from late August to September, these insects showed the different occurrence periods in northern regions. Especially, the second adults of N. lugens were not occurred and the second to third generation adults of S. furcifera, C. medinalis, and M. separata showed similar occurrence properties. Based on these properties, the occurrence of major rice insect pests will be less in northeast regions, northern regions of east sea, northern inlands, and northern alpines of the Korean peninsula. However, comparing with their occurrences in northern regions of Gyenonggi and Gangwon provinces, the rice insect pests may show similar occurrence pattern in mid-korean mountains except for pyunggang and yangduk regions as well as in the southern and northern regions of Suyang-san.

Fire Detection Using Multi-Channel Information and Gray Level Co-occurrence Matrix Image Features

  • Jun, Jae-Hyun;Kim, Min-Jun;Jang, Yong-Suk;Kim, Sung-Ho
    • Journal of Information Processing Systems
    • /
    • v.13 no.3
    • /
    • pp.590-598
    • /
    • 2017
  • Recently, there has been an increase in the number of hazardous events, such as fire accidents. Monitoring systems that rely on human resources depend on people; hence, the performance of the system can be degraded when human operators are fatigued or tensed. It is easy to use fire alarm boxes; however, these are frequently activated by external factors such as temperature and humidity. We propose an approach to fire detection using an image processing technique. In this paper, we propose a fire detection method using multichannel information and gray level co-occurrence matrix (GLCM) image features. Multi-channels consist of RGB, YCbCr, and HSV color spaces. The flame color and smoke texture information are used to detect the flames and smoke, respectively. The experimental results show that the proposed method performs better than the previous method in terms of accuracy of fire detection.

World Co-occurrence based Automatic Text Summarization (단어공기정보를 이용한 자동화 문서 요약)

  • 류동원;이종혁
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04b
    • /
    • pp.345-347
    • /
    • 2000
  • 본 연구는 문서를 구성하고 있는 각 단락들(paragraphs)간의 단어공기정보(world co-occurrence)를 이용해 이들간의 관계를 바탕으로 중요단락을 추출하여 문서의 요약을 한다. 이같은 접근법 문서요약의 성능은 단락들간의 정보추출방법과 추출된 정보에 의한 중요단락 선택방법에 크게 좌우된다. 본 논문에서는 중요단락에 대한 선택을 할 때 기존의 방법론에서 발생하는 요약문의 가독성(readability)을 높이면서 또한 성능의 향상도 꾀할 수 있는 방법론을 제시한다.

  • PDF

An Experimental Study on an Effective Word Sense Disambiguation Model Based on Automatic Sense Tagging Using Dictionary Information (사전 정보를 이용한 단어 중의성 해소 모형에 관한 실험적 연구)

  • Lee, Yong-Gu;Chung, Young-Mee
    • Journal of the Korean Society for information Management
    • /
    • v.24 no.1 s.63
    • /
    • pp.321-342
    • /
    • 2007
  • This study presents an effective word sense disambiguation model that does not require manual sense tagging Process by automatically tagging the right sense using a machine-readable and the collocation co-occurrence-based methods. The dictionary information-based method that applied multiple feature selection showed the tagging accuracy of 70.06%, and the collocation co-occurrence-based method 56.33%. The sense classifier using the dictionary information-based tagging method showed the classification accuracy of 68.11%, and that using the collocation co-occurrence-based tagging method 62.09% The combined 1a99ing method applying data fusion technique achieved a greater performance of 76.09% resulting in the classification accuracy of 76.16%.

An Exploratory Study on Mobile App Review through Comparative Analysis between South Korea and U.S. (한국과 미국 간 모바일 앱 리뷰의 감성과 토픽 차이에 관한 탐색적 비교 분석)

  • Cho, Hyukjun;Kang, Juyoung;Jeong, Dae Yong
    • Journal of Information Technology Services
    • /
    • v.15 no.2
    • /
    • pp.169-184
    • /
    • 2016
  • Smartphone use is rapidly spreading due to the advantage of being able to connect to the Internet anytime, anywhere--and mobile app development is developing accordingly. The characteristic of the mobile app market is the ability to launch one's app into foreign markets with ease as long as the platform is the same. However, a large amount of prior research asserts that consumers behave differently depending on their culture and, from this perspective, various studies comparing the differences between consumer behaviors in different countries exist. Accordingly, this research, which uses online product reviews (OPRs) in order to analyze the cultural differences in consumer behavior comparatively by nationality, proposes to compare the U.S. and South Korea by selecting ten apps which were released in both countries in order to perform a sentimental analysis on the basis of star ratings and, based on those ratings, to interpret the sentiments in reviews. This research was carried out to determine whether, on the basis of ratings analysis, analysis of review contents for sentiment differences, analysis of LDA topic modeling, and co-occurrence analysis, actual differences in online reviews in South Korea and the U.S. exist due to cultural differences. The results confirm that the sentiments of reviews for both countries appear to be more negative than those of star ratings. Furthermore, while no great differences in high-raking review topics between the U.S. and South Korea were revealed through topic modeling and co-occurrence analyses, numerous differences in sentiment appeared-confirming that Koreans evaluated the mobile apps' specialized functions, while Americans evaluated the mobile apps in their entirety. This research reveals that differences in sentiments regarding mobile app reviews due to cultural differences between Koreans and Americans can be seen through sentiment analysis and topic modeling, and, through co-occurrence analysis, that they were able to examine trends in review-writing for each country.

Selective Feature Extraction Method Between Markov Transition Probability and Co-occurrence Probability for Image Splicing Detection (접합 영상 검출을 위한 마르코프 천이 확률 및 동시발생 확률에 대한 선택적 특징 추출 방법)

  • Han, Jong-Goo;Eom, Il-Kyu;Moon, Yong-Ho;Ha, Seok-Wun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.4
    • /
    • pp.833-839
    • /
    • 2016
  • In this paper, we propose a selective feature extraction algorithm between Markov transition probability and co-occurrence probability for an effective image splicing detection. The Features used in our method are composed of the difference values between DCT coefficients in the adjacent blocks and the value of Kullback-Leibler divergence(KLD) is calculated to evaluate the differences between the distribution of original image features and spliced image features. KLD value is an efficient measure for selecting Markov feature or Co-occurrence feature because KLD shows non-similarity of the two distributions. After training the extracted feature vectors using the SVM classifier, we determine whether the presence of the image splicing forgery. To verify our algorithm we used grid search and 6-folds cross-validation. Based on the experimental results it shows that the proposed method has good detection performance with a limited number of features compared to conventional methods.

An Action Unit co-occurrence constraint 3DCNN based Action Unit recognition approach

  • Jia, Xibin;Li, Weiting;Wang, Yuechen;Hong, SungChan;Su, Xing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.3
    • /
    • pp.924-942
    • /
    • 2020
  • The facial expression is diverse and various among persons due to the impact of the psychology factor. Whilst the facial action is comparatively steady because of the fixedness of the anatomic structure. Therefore, to improve performance of the action unit recognition will facilitate the facial expression recognition and provide profound basis for the mental state analysis, etc. However, it still a challenge job and recognition accuracy rate is limited, because the muscle movements around the face are tiny and the facial actions are not obvious accordingly. Taking account of the moving of muscles impact each other when person express their emotion, we propose to make full use of co-occurrence relationship among action units (AUs) in this paper. Considering the dynamic characteristic of AUs as well, we adopt the 3D Convolutional Neural Network(3DCNN) as base framework and proposed to recognize multiple action units around brows, nose and mouth specially contributing in the emotion expression with putting their co-occurrence relationships as constrain. The experiments have been conducted on a typical public dataset CASME and its variant CASME2 dataset. The experiment results show that our proposed AU co-occurrence constraint 3DCNN based AU recognition approach outperforms current approaches and demonstrate the effectiveness of taking use of AUs relationship in AU recognition.

Abnormal SIP Packet Detection Mechanism using Co-occurrence Information (공기 정보를 이용한 비정상 SIP 패킷 공격탐지 기법)

  • Kim, Deuk-Young;Lee, Hyung-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.1
    • /
    • pp.130-140
    • /
    • 2010
  • SIP (Session Initiation Protocol) is a signaling protocol to provide IP-based VoIP (Voice over IP) service. However, many security vulnerabilities exist as the SIP protocol utilizes the existing IP based network. The SIP Malformed message attacks may cause malfunction on VoIP services by changing the transmitted SIP header information. Additionally, there are several threats such that an attacker can extract personal information on SIP client system by inserting malicious code into SIP header. Therefore, the alternative measures should be required. In this study, we analyzed the existing research on the SIP anomaly message detection mechanism against SIP attack. And then, we proposed a Co-occurrence based SIP packet analysis mechanism, which has been used on language processing techniques. We proposed a association rule generation and an attack detection technique by using the actual SIP session state. Experimental results showed that the average detection rate was 87% on SIP attacks in case of using the proposed technique.

Image Retrieval Using the Color Co-occurrence Histogram Describing the Size and Coherence of the Homogeneous Color Region (칼라 영역의 크기와 뭉침을 기술하는 칼라 동시발생 히스토그램을 이용한 영상검색)

  • An Myung-Seok;Cho Seok-Je
    • The KIPS Transactions:PartB
    • /
    • v.13B no.3 s.106
    • /
    • pp.275-282
    • /
    • 2006
  • For the efficient image retrieval, the method has studied that uses color distribution and relations between pixels. This paper presents the color descriptor that stands high above the others in image retrieval capacity. It is based on color co-occurrence histogram that the diagonal part and the non-diagonal part are attached the weight and modified to energy of color co-occurrence histogram, and the number of bins with petty worth have little influence is curtailed. It's verified by analysis that the diagonal part carries size information of homogeneous color region and the non-diagonal part does information about the coherence of it, Moreover the non-diagonal part is more influential than diagonal part in survey of similarity between images. So, the non-diagonal part is attached more weight than the diagonal part as a result of the research. The experiments validate that the proposed descriptor shows better image retrieval performance when the weight for non-diagonal part is set to the value between 0.7 and 0.9.

Improved Tag Selection for Tag-cloud using the Dynamic Characteristics of Tag Co-occurrence (태그 동시 출현의 동적인 특징을 이용한 개선된 태그 클라우드의 태그 선택 방법)

  • Kim, Du-Nam;Lee, Kang-Pyo;Kim, Hyoung-Joo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.6
    • /
    • pp.405-413
    • /
    • 2009
  • Tagging system is the system that allows internet users to assign new meta-data which is called tag to article, photo, video and etc. for facilitating searching and browsing of web contents. Tag cloud, a visual interface is widely used for browsing tag space. Tag cloud selects the tags with the highest frequency and presents them alphabetically with font size reflecting their popularity. However the conventional tag selection method includes known weaknesses. So, we propose a novel tag selection method Freshness, which helps to find fresh web contents. Freshness is the mean value of Kullback-Leibler divergences between each consecutive change of tag co-occurrence probability distribution. We collected tag data from three web sites, Allblog, Eolin and Technorati and constructed the system, 'Fresh Tag Cloud' which collects tag data and creates our tag cloud. Comparing the experimental results between Fresh Tag Cloud and the conventional one with data from Allblog, our one shows 87.5% less overlapping average, which means Fresh Tag Cloud outperforms the conventional tag cloud.