• Title/Summary/Keyword: co occurrence

Search Result 1,063, Processing Time 0.03 seconds

Spliced Image Detection Using Characteristic Function Moments of Co-occurrence Matrix (동시 발생 행렬의 특성함수 모멘트를 이용한 접합 영상 검출)

  • Park, Tae-Hee;Moon, Yong-Ho;Eom, Il-Kyu
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.5
    • /
    • pp.265-272
    • /
    • 2015
  • This paper presents an improved feature extraction method to achieve a good performance in the detection of splicing forged images. Strong edges caused by the image splicing destroy the statistical dependencies between parent and child subbands in the wavelet domain. We analyze the co-occurrence probability matrix of parent and child subbands in the wavelet domain, and calculate the statistical moments from two-dimensional characteristic function of the co-occurrence matrix. The extracted features are used as the input of SVM classifier. Experimental results show that the proposed method obtains a good performance with a small number of features compared to the existing methods.

Intellectual Structure of the Altmetrics field: A Co-Word Analysis (Co-word를 이용한 알트메트리얼 필리트의 지적 구조 연구)

  • Li, Jiapei;Li, Xiaomeng;Lee, HyunChang;Shin, SeongYoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.148-150
    • /
    • 2017
  • In recent years, "altmetrics", given birth by social media and the academic community, have become a metric source for measuring the academic impact of scientific literature. This study has undertaken a co-word analysis of author keywords in "Altmetrics" articles from the Web of Science database from 2012 to 2017 and used a co-occurrence matrix to create a clustering of the words. "Altmetrics" co-occurrence network map was derived and the research hotspots was analyzed.

  • PDF

Measure of the Associations of Accupoints and Pathologies Documented in the Classical Acupuncture Literature (고의서에 나타난 경혈과 병증의 연관성 측정 및 시각화 - 침구자생경 분석 예를 중심으로 -)

  • Oh, Junho
    • Korean Journal of Acupuncture
    • /
    • v.33 no.1
    • /
    • pp.18-32
    • /
    • 2016
  • Objectives : This study aims to analyze the co-occurrence of pathological symptoms and corresponding acupoints as documented by the comprehensive acupuncture and moxibustion records in the classical texts of Far East traditional medicine as an aid to a more efficient understanding of the tacit treatment principles of ancient physicians. Methods : The Classic of Nourishing Life with Acupuncture and Moxibustion(Zhenjiu Zisheng Jing; hereinafter ZZJ) was selected as the primary reference book for the analysis. The pathology-acupoint co-occurrence analysis was performed by applying 4 values of vector space measures(weighted Euclidean distance, Euclidean distance, $Cram\acute{e}r^{\prime}s$ V and Canberra distance), which measure the distance between the observed and expected co-occurrence counts, and 3 values of probabilistic measures(association strength, Fisher's exact test and Jaccard similarity), which measure the probability of observed co-occurrences. Results : The treatment records contained in ZZJ were preprocessed, which yielded 4162 pathology-acupoint sets. Co-occurrence was performed applying 7 different analysis variables, followed by a prediction simulation. The prediction simulation results revealed the Weighted Euclidean distance had the highest prediction rate with 24.32%, followed by Canberra distance(23.14%) and association strength(21.29%). Conclusions : The weighted Euclidean distance among the vector space measures and the association strength among the probabilistic measures were verified to be the most efficient analysis methods in analyzing the correlation between acupoints and pathologies found in the classical medical texts.

Keyword Visualization based on the number of occurrences (출현회수에 따른 키워드 가시화 연구)

  • Lee, HyunChang;Shin, SeongYoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.484-485
    • /
    • 2019
  • Recently, interest in data analysis has increased as the importance of big data becomes more important. Particularly, as social media data and academic research communities become more active and important, analysis becomes more important. In this study, co-word analysis was conducted through altmetrics articles collected from 2012 to 2017. In this way, the co-occurrence network map is derived from the keyword and the emphasized keyword is extracted.

  • PDF

Keyword Visualization based on the Number of Occurrences (키워드 빈도수에 따른 시각화 연구)

  • Lee, HyunChang;Shin, SeongYoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.565-566
    • /
    • 2021
  • Recently, interest in data analysis has increased as the importance of big data becomes more important. Particularly, as social media data and academic research communities become more active and important, analysis becomes more important. In this study, co-word analysis was conducted through altmetrics articles collected from 2012 to 2017. In this way, the co-occurrence network map is derived from the keyword and the emphasized keyword is extracted.

  • PDF

A Procedure for Inducing the Occurrence of Rice Seedling Blast in Paddy Field

  • Qin, Peng;Hu, Xiaochun;Jiang, Nan;Bai, Zhenan;Liu, Tiangang;Fu, Chenjian;Song, Yongbang;Wang, Kai;Yang, Yuanzhu
    • The Plant Pathology Journal
    • /
    • v.37 no.2
    • /
    • pp.200-203
    • /
    • 2021
  • Rice blast caused by the filamentous fungus Magnaporthe oryzae, is arguably the most devastating rice disease worldwide. Development of a high-throughput and reliable field blast resistance evaluation system is essential for resistant germplasm screening, resistance genes identification and resistant varieties breeding. However, the occurrence of rice blast in paddy field is easily affected by various factors, particularly lack of sufficient inoculum, which always leads to the non-uniform occurrence and reduced disease severity. Here, we described a procedure for adequately inducing the occurrence of rice seedling blast in paddy field, which involves pretreatment of diseased straw, initiation of seedling blast for the first batch of spreader population, inducing the occurrence of the second batch of spreader population and test materials. This procedure enables uniform and consistent infection, which facilitates efficient and accurate assessment of seedling blast resistance for diverse rice materials.

Texture Analysis and Classification Using Wavelet Extension and Gray Level Co-occurrence Matrix for Defect Detection in Small Dimension Images

  • Agani, Nazori;Al-Attas, Syed Abd Rahman;Salleh, Sheikh Hussain Sheikh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.2059-2064
    • /
    • 2004
  • Texture analysis is an important role for automatic visual insfection. This paper presents an application of wavelet extension and Gray level co-occurrence matrix (GLCM) for detection of defect encountered in textured images. Texture characteristic in low quality images is not to easy task to perform caused by noise, low frequency and small dimension. In order to solve this problem, we have developed a procedure called wavelet image extension. Wavelet extension procedure is used to determine the frequency bands carrying the most information about the texture by decomposing images into multiple frequency bands and to form an image approximation with higher resolution. Thus, wavelet extension procedure offers the ability to robust feature extraction in images. Then the features are extracted from the co-occurrence matrices computed from the sub-bands which performed by partitioning the texture image into sub-window. In the detection part, Mahalanobis distance classifier is used to decide whether the test image is defective or non defective.

  • PDF

Comparative Analysis of Job Satisfaction Factors, Using LDA Topic Modeling by Industries : The Case Study of Job Planet Reviews (토픽모델링 기법을 활용한 산업별 직무만족요인 비교 조사 : 잡플래닛 리뷰를 중심으로)

  • Kim, Dongwook;Kang, Juyoung;Lim, Jay Ick
    • Journal of Information Technology Services
    • /
    • v.15 no.3
    • /
    • pp.157-171
    • /
    • 2016
  • As unemployment rates and concerns about turnover keep growing, the need for information is also increasing. In these situations, the job reviews which share information about the company catch people's attention because they are usually created by people who worked at the company. The development of SNS and mobile environments has led to an increase in the web services that provide job reviews. For example, Jobplanet is a job review service in Korea, and Glassdoor.com offers a similar service in the US. Despite this attention, however, research utilizing job reviews is insufficient. This paper asks whether there are differences in ratios of job satisfaction factors by industry, using LDA topic modeling and co-occurrence analysis to explore the differences. Through the results of LDA, we find that the ratios of job satisfaction factors are similar by industry. At the same time, the results of co-occurrence analysis show that the co-occurrence frequency of some job satisfaction factors appears high: pay and welfare, balance of work and life, company culture. We expect that the result of this research will be helpful in comparative analysis of job satisfaction factors by industry. Furthermore, in this paper we suggest how to use the job review data in organizational behavior research.

Changes in Co-Occurrence of Smoking and Harmful Drinking among Youth: a Study from the Chi Linh Demographic - Epidemiological Surveillance System in Vietnam, 2006-2013

  • Duong, Minh Duc;Le, Thi Vui;Nguyen, Thuy Quynh;Hoang, Van Minh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.sup1
    • /
    • pp.55-63
    • /
    • 2016
  • Smoking and harmful drinking dramatically increase health risks but little is known about their cooccurrence and factors that influence this co-habit, limiting development and implementation of appropriately targeted prevention interventions. This study was conducted among youth aged 10-24 years old in the Chi Linh Demographic - Epidemiological Surveillance System (CHILILAB DESS). The total numbers in the first, second and third rounds in 2006, 2009 and 2013 were 12,406, 10,211, and 7,654, respectively. A random-effects logit model controlling for both time-variant and time-invariant variables was applied to explore factors associated with current smoking, harmful drinking, and occurrence of smoking and harmful drinking together. We found dramatically increasing trends in current smoking, harmful drinking and co-occurrence among youth. Our results indicate similar health problems among youth in peri-urban areas in Vietnam. Demographic characteristics (older age, being male, being unmarried, and having informal work) appeared to be predictors for smoking and drinking behaviour. Besides, peer and family members had significant influence on smoking, whereas having a close-friend who was smoking was the most important variable. The results suggested that smoking and harmful drinking should not be solved with separate, stand-alone interventions but rather with integrated efforts.

Empirical Comparison of Word Similarity Measures Based on Co-Occurrence, Context, and a Vector Space Model

  • Kadowaki, Natsuki;Kishida, Kazuaki
    • Journal of Information Science Theory and Practice
    • /
    • v.8 no.2
    • /
    • pp.6-17
    • /
    • 2020
  • Word similarity is often measured to enhance system performance in the information retrieval field and other related areas. This paper reports on an experimental comparison of values for word similarity measures that were computed based on 50 intentionally selected words from a Reuters corpus. There were three targets, including (1) co-occurrence-based similarity measures (for which a co-occurrence frequency is counted as the number of documents or sentences), (2) context-based distributional similarity measures obtained from a latent Dirichlet allocation (LDA), nonnegative matrix factorization (NMF), and Word2Vec algorithm, and (3) similarity measures computed from the tf-idf weights of each word according to a vector space model (VSM). Here, a Pearson correlation coefficient for a pair of VSM-based similarity measures and co-occurrence-based similarity measures according to the number of documents was highest. Group-average agglomerative hierarchical clustering was also applied to similarity matrices computed by individual measures. An evaluation of the cluster sets according to an answer set revealed that VSM- and LDA-based similarity measures performed best.