• Title/Summary/Keyword: clustering-based network

Search Result 754, Processing Time 0.025 seconds

Clustering Algorithms for Reducing Energy Consumption - A Review

  • Kinza Mubasher;Rahat Mansha
    • International Journal of Computer Science & Network Security
    • /
    • 제23권7호
    • /
    • pp.109-118
    • /
    • 2023
  • Energy awareness is an essential design flaw in wireless sensor network. Clustering is the most highly regarded energy-efficient technique that offers various benefits such as energy efficiency and network lifetime. Clusters create hierarchical WSNs that introduce the efficient use of limited sensor node resources and thus enhance the life of the network. The goal of this paper is to provide an analysis of the various energy efficient clustering algorithms. Analysis is based on the energy efficiency and network lifetime. This review paper provides an analysis of different energy-efficient clustering algorithms for WSNs.

Security Clustering Algorithm Based on Integrated Trust Value for Unmanned Aerial Vehicles Network

  • Zhou, Jingxian;Wang, Zengqi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권4호
    • /
    • pp.1773-1795
    • /
    • 2020
  • Unmanned aerial vehicles (UAVs) network are a very vibrant research area nowadays. They have many military and civil applications. Limited bandwidth, the high mobility and secure communication of micro UAVs represent their three main problems. In this paper, we try to address these problems by means of secure clustering, and a security clustering algorithm based on integrated trust value for UAVs network is proposed. First, an improved the k-means++ algorithm is presented to determine the optimal number of clusters by the network bandwidth parameter, which ensures the optimal use of network bandwidth. Second, we considered variables representing the link expiration time to improve node clustering, and used the integrated trust value to rapidly detect malicious nodes and establish a head list. Node clustering reduce impact of high mobility and head list enhance the security of clustering algorithm. Finally, combined the remaining energy ratio, relative mobility, and the relative degrees of the nodes to select the best cluster head. The results of a simulation showed that the proposed clustering algorithm incurred a smaller computational load and higher network security.

Scalable Search based on Fuzzy Clustering for Interest-based P2P Networks

  • Mateo, Romeo Mark A.;Lee, Jae-Wan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제5권1호
    • /
    • pp.157-176
    • /
    • 2011
  • An interest-based P2P constructs the peer connections based on similarities for efficient search of resources. A clustering technique using peer similarities as data is an effective approach to group the most relevant peers. However, the separation of groups produced from clustering lowers the scalability of a P2P network. Moreover, the interest-based approach is only concerned with user-level grouping where topology-awareness on the physical network is not considered. This paper proposes an efficient scalable search for the interest-based P2P system. A scalable multi-ring (SMR) based on fuzzy clustering handles the grouping of relevant peers and the proposed scalable search utilizes the SMR for scalability of peer queries. In forming the multi-ring, a minimized route function is used to determine the shortest route to connect peers on the physical network. Performance evaluation showed that the SMR acquired an accurate peer grouping and improved the connectivity rate of the P2P network. Also, the proposed scalable search was efficient in finding more replicated files throughout the peer network compared to other traditional P2P approaches.

무선 센서네트워크에서 네트워크수명 극대화 방안 (A New Scheme for Maximizing Network Lifetime in Wireless Sensor Networks)

  • 김정삼
    • 디지털산업정보학회논문지
    • /
    • 제10권2호
    • /
    • pp.47-59
    • /
    • 2014
  • In this paper, I propose a new energy efficient clustering scheme to prolong the network lifetime by reducing energy consumption at the sensor node. It is possible that a node determines whether to participate in clustering with certain probability based on local density. This scheme is useful under the environment that sensor nodes are deployed unevenly within the sensing area. By adjusting the probability of participating in clustering dynamically with local density of nodes, the energy consumption of the network is reduced. So, the lifetime of the network is extended. In the region where nodes are densely deployed, it is possible to reduce the energy consumption of the network by limiting the number of node which is participated in clustering with probability which can be adjusted dynamically based on local density of the node. Through computer simulation, it is verified that the proposed scheme is more energy efficient than LEACH protocol under the environment where node are densely located in a specific area.

Emergent damage pattern recognition using immune network theory

  • Chen, Bo;Zang, Chuanzhi
    • Smart Structures and Systems
    • /
    • 제8권1호
    • /
    • pp.69-92
    • /
    • 2011
  • This paper presents an emergent pattern recognition approach based on the immune network theory and hierarchical clustering algorithms. The immune network allows its components to change and learn patterns by changing the strength of connections between individual components. The presented immune-network-based approach achieves emergent pattern recognition by dynamically generating an internal image for the input data patterns. The members (feature vectors for each data pattern) of the internal image are produced by an immune network model to form a network of antibody memory cells. To classify antibody memory cells to different data patterns, hierarchical clustering algorithms are used to create an antibody memory cell clustering. In addition, evaluation graphs and L method are used to determine the best number of clusters for the antibody memory cell clustering. The presented immune-network-based emergent pattern recognition (INEPR) algorithm can automatically generate an internal image mapping to the input data patterns without the need of specifying the number of patterns in advance. The INEPR algorithm has been tested using a benchmark civil structure. The test results show that the INEPR algorithm is able to recognize new structural damage patterns.

Context-based 클러스터링에 의한 Granular-based RBF NN의 설계 (The Design of Granular-based Radial Basis Function Neural Network by Context-based Clustering)

  • 박호성;오성권
    • 전기학회논문지
    • /
    • 제58권6호
    • /
    • pp.1230-1237
    • /
    • 2009
  • In this paper, we develop a design methodology of Granular-based Radial Basis Function Neural Networks(GRBFNN) by context-based clustering. In contrast with the plethora of existing approaches, here we promote a development strategy in which a topology of the network is predominantly based upon a collection of information granules formed on a basis of available experimental data. The output space is granulated making use of the K-Means clustering while the input space is clustered with the aid of a so-called context-based fuzzy clustering. The number of information granules produced for each context is adjusted so that we satisfy a certain reconstructability criterion that helps us minimize an error between the original data and the ones resulting from their reconstruction involving prototypes of the clusters and the corresponding membership values. In contrast to "standard" Radial Basis Function neural networks, the output neuron of the network exhibits a certain functional nature as its connections are realized as local linear whose location is determined by the values of the context and the prototypes in the input space. The other parameters of these local functions are subject to further parametric optimization. Numeric examples involve some low dimensional synthetic data and selected data coming from the Machine Learning repository.

Intelligent Clustering in Vehicular ad hoc Networks

  • Aadil, Farhan;Khan, Salabat;Bajwa, Khalid Bashir;Khan, Muhammad Fahad;Ali, Asad
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권8호
    • /
    • pp.3512-3528
    • /
    • 2016
  • A network with high mobility nodes or vehicles is vehicular ad hoc Network (VANET). For improvement in communication efficiency of VANET, many techniques have been proposed; one of these techniques is vehicular node clustering. Cluster nodes (CNs) and Cluster Heads (CHs) are elected or selected in the process of clustering. The longer the lifetime of clusters and the lesser the number of CHs attributes to efficient networking in VANETs. In this paper, a novel Clustering algorithm is proposed based on Ant Colony Optimization (ACO) for VANET named ACONET. This algorithm forms optimized clusters to offer robust communication for VANETs. For optimized clustering, parameters of transmission range, direction, speed of the nodes and load balance factor (LBF) are considered. The ACONET is compared empirically with state of the art methods, including Multi-Objective Particle Swarm Optimization (MOPSO) and Comprehensive Learning Particle Swarm Optimization (CLPSO) based clustering techniques. An extensive set of experiments is performed by varying the grid size of the network, the transmission range of nodes, and total number of nodes in network to evaluate the effectiveness of the algorithms in comparison. The results indicate that the ACONET has significantly outperformed the competitors.

Mobility-Based Clustering Algorithm for Multimedia Broadcasting over IEEE 802.11p-LTE-enabled VANET

  • Syfullah, Mohammad;Lim, Joanne Mun-Yee;Siaw, Fei Lu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권3호
    • /
    • pp.1213-1237
    • /
    • 2019
  • Vehicular Ad-hoc Network (VANET) facilities envision future Intelligent Transporting Systems (ITSs) by providing inter-vehicle communication for metrics such as road surveillance, traffic information, and road condition. In recent years, vehicle manufacturers, researchers and academicians have devoted significant attention to vehicular communication technology because of its highly dynamic connectivity and self-organized, decentralized networking characteristics. However, due to VANET's high mobility, dynamic network topology and low communication coverage, dissemination of large data packets (e.g. multimedia content) is challenging. Clustering enhances network performance by maintaining communication link stability, sharing network resources and efficiently using bandwidth among nodes. This paper proposes a mobility-based, multi-hop clustering algorithm, (MBCA) for multimedia content broadcasting over an IEEE 802.11p-LTE-enabled hybrid VANET architecture. The OMNeT++ network simulator and a SUMO traffic generator are used to simulate a network scenario. The simulation results indicate that the proposed clustering algorithm over a hybrid VANET architecture improves the overall network stability and performance, resulting in an overall 20% increased cluster head duration, 20% increased cluster member duration, lower cluster overhead, 15% improved data packet delivery ratio and lower network delay from the referenced schemes [46], [47] and [50] during multimedia content dissemination over VANET.

Clustering 및 위치정보를 활용한 WSN(Wireless Sensor Network) 성능 향상 방안 연구 (A Study for Improving WSNs(Wireless Sensor Networks) Performance using Clustering and Location Information)

  • 전진한;홍성훈
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2019년도 춘계학술대회
    • /
    • pp.260-263
    • /
    • 2019
  • 접근이 어렵거나 지속적인 모니터링이 필요한 서비스에 적용 가능한 WSN(Wireless Sensor Network) 기술은 최근 그 응용 분야의 확대 및 효율성으로 연구 개발의 필요성이 점증하고 있는 분야이다. 본 논문은 WSN의 패킷 전송률을 증가시키고 센서 노드들의 수명을 연장하기 위해 제시된 기존 연구들을 분석한 후, 센서 노드들에 Clustering 및 위치 기반 기법 적용 시 기존 연구 대비 성능 향상 요인들을 분석하였으며 이를 기반으로 패킷 손실률과 네트워크 수명 측면에서 향후 WSN의 성능 향상을 위한 새로운 기법에 대한 연구를 수행 할 예정이다.

  • PDF

A Genetic-Algorithm-Based Optimized Clustering for Energy-Efficient Routing in MWSN

  • Sara, Getsy S.;Devi, S. Prasanna;Sridharan, D.
    • ETRI Journal
    • /
    • 제34권6호
    • /
    • pp.922-931
    • /
    • 2012
  • With the increasing demands for mobile wireless sensor networks in recent years, designing an energy-efficient clustering and routing protocol has become very important. This paper provides an analytical model to evaluate the power consumption of a mobile sensor node. Based on this, a clustering algorithm is designed to optimize the energy efficiency during cluster head formation. A genetic algorithm technique is employed to find the near-optimal threshold for residual energy below which a node has to give up its role of being the cluster head. This clustering algorithm along with a hybrid routing concept is applied as the near-optimal energy-efficient routing technique to increase the overall efficiency of the network. Compared to the mobile low energy adaptive clustering hierarchy protocol, the simulation studies reveal that the energy-efficient routing technique produces a longer network lifetime and achieves better energy efficiency.