• Title/Summary/Keyword: clustering의사결정나무

Search Result 15, Processing Time 0.017 seconds

Development of newly recruited privates on-the-job Training Achievements Group Classification Model (신병 주특기교육 성취집단 예측모형 개발)

  • Kwak, Ki-Hyo;Suh, Yong-Moo
    • Journal of the military operations research society of Korea
    • /
    • v.33 no.2
    • /
    • pp.101-113
    • /
    • 2007
  • The period of military personnel service will be phased down by 2014 according to 'The law of National Defense Reformation' issued by the Ministry of National Defense. For this reason, the ROK army provides discrimination education to 'newly recruited privates' for more effective individual performance in the on-the-job training. For the training to be more effective, it would be essential to predict the degree of achievements by new privates in the training. Thus, we used data mining techniques to develop a classification model which classifies the new privates into one of two achievements groups, so that different skills of education are applied to each group. The target variable for this model is a binary variable, whose value can be either 'a group of general control' or 'a group of special control'. We developed four pure classification models using Neural Network, Decision Tree, Support Vector Machine and Naive Bayesian. We also built four hybrid models, each of which combines k-means clustering algorithm with one of these four mining technique. Experimental results demonstrated that the highest performance model was the hybrid model of k-means and Neural Network. We expect that various military education programs could be supported by these classification models for better educational performance.

Analysis of Utilization Characteristics, Health Behaviors and Health Management Level of Participants in Private Health Examination in a General Hospital (일개 종합병원의 민간 건강검진 수검자의 검진이용 특성, 건강행태 및 건강관리 수준 분석)

  • Kim, Yoo-Mi;Park, Jong-Ho;Kim, Won-Joong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.301-311
    • /
    • 2013
  • This study aims to analyze characteristics, health behaviors and health management level related to private health examination recipients in one general hospital. To achieve this, we analyzed 150,501 cases of private health examination data for 11 years from 2001 to 2011 for 20,696 participants in 2011 in a Dae-Jeon general hospital health examination center. The cluster analysis for classify private health examination group is used z-score standardization of K-means clustering method. The logistic regression analysis, decision tree and neural network analysis are used to periodic/non-periodic private health examination classification model. 1,000 people were selected as a customer management business group that has high probability to be non-periodic private health examination patients in new private health examination. According to results of this study, private health examination group was categorized by new, periodic and non-periodic group. New participants in private health examination were more 30~39 years old person than other age groups and more patients suspected of having renal disease. Periodic participants in private health examination were more male participants and more patients suspected of having hyperlipidemia. Non-periodic participants in private health examination were more smoking and sitting person and more patients suspected of having anemia and diabetes mellitus. As a result of decision tree, variables related to non-periodic participants in private health examination were sex, age, residence, exercise, anemia, hyperlipidemia, diabetes mellitus, obesity and liver disease. In particular, 71.4% of non-periodic participants were female, non-anemic, non-exercise, and suspicious obesity person. To operation of customized customer management business for private health examination will contribute to efficiency in health examination center.

Group Classification on Management Behavior of Diabetic Mellitus (당뇨 환자의 관리행태에 대한 군집 분류)

  • Kang, Sung-Hong;Choi, Soon-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.765-774
    • /
    • 2011
  • The purpose of this study is to provide informative statistics which can be used for effective Diabetes Management Programs. We collected and analyzed the data of 666 diabetic people who had participated in Korean National Health and Nutrition Examination Survey in 2007 and 2008. Group classification on management behavior of Diabetic Mellitus is based on the K-means clustering method. The Decision Tree method and Multiple Regression Analysis were used to study factors of the management behavior of Diabetic Mellitus. Diabetic people were largely classified into three categories: Health Behavior Program Group, Focused Management Program Group, and Complication Test Program Group. First, Health Behavior Program Group means that even though drug therapy and complication test are being well performed, people should still need to improve their health behavior such as exercising regularly and avoid drinking and smoking. Second, Focused Management Program Group means that they show an uncooperative attitude about treatment and complication test and also take a passive action to improve their health behavior. Third, Complication Test Program Group means that they take a positive attitude about treatment and improving their health behavior but they pay no attention to complication test to detect acute and chronic disease early. The main factor for group classification was to prove whether they have hyperlipidemia or not. This varied widely with an individual's gender, income, age, occupation, and self rated health. To improve the rate of diabetic management, specialized diabetic management programs should be applied depending on each group's character.

A Literature Review and Classification of Recommender Systems on Academic Journals (추천시스템관련 학술논문 분석 및 분류)

  • Park, Deuk-Hee;Kim, Hyea-Kyeong;Choi, Il-Young;Kim, Jae-Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.1
    • /
    • pp.139-152
    • /
    • 2011
  • Recommender systems have become an important research field since the emergence of the first paper on collaborative filtering in the mid-1990s. In general, recommender systems are defined as the supporting systems which help users to find information, products, or services (such as books, movies, music, digital products, web sites, and TV programs) by aggregating and analyzing suggestions from other users, which mean reviews from various authorities, and user attributes. However, as academic researches on recommender systems have increased significantly over the last ten years, more researches are required to be applicable in the real world situation. Because research field on recommender systems is still wide and less mature than other research fields. Accordingly, the existing articles on recommender systems need to be reviewed toward the next generation of recommender systems. However, it would be not easy to confine the recommender system researches to specific disciplines, considering the nature of the recommender system researches. So, we reviewed all articles on recommender systems from 37 journals which were published from 2001 to 2010. The 37 journals are selected from top 125 journals of the MIS Journal Rankings. Also, the literature search was based on the descriptors "Recommender system", "Recommendation system", "Personalization system", "Collaborative filtering" and "Contents filtering". The full text of each article was reviewed to eliminate the article that was not actually related to recommender systems. Many of articles were excluded because the articles such as Conference papers, master's and doctoral dissertations, textbook, unpublished working papers, non-English publication papers and news were unfit for our research. We classified articles by year of publication, journals, recommendation fields, and data mining techniques. The recommendation fields and data mining techniques of 187 articles are reviewed and classified into eight recommendation fields (book, document, image, movie, music, shopping, TV program, and others) and eight data mining techniques (association rule, clustering, decision tree, k-nearest neighbor, link analysis, neural network, regression, and other heuristic methods). The results represented in this paper have several significant implications. First, based on previous publication rates, the interest in the recommender system related research will grow significantly in the future. Second, 49 articles are related to movie recommendation whereas image and TV program recommendation are identified in only 6 articles. This result has been caused by the easy use of MovieLens data set. So, it is necessary to prepare data set of other fields. Third, recently social network analysis has been used in the various applications. However studies on recommender systems using social network analysis are deficient. Henceforth, we expect that new recommendation approaches using social network analysis will be developed in the recommender systems. So, it will be an interesting and further research area to evaluate the recommendation system researches using social method analysis. This result provides trend of recommender system researches by examining the published literature, and provides practitioners and researchers with insight and future direction on recommender systems. We hope that this research helps anyone who is interested in recommender systems research to gain insight for future research.

Usefulness of Data Mining in Criminal Investigation (데이터 마이닝의 범죄수사 적용 가능성)

  • Kim, Joon-Woo;Sohn, Joong-Kweon;Lee, Sang-Han
    • Journal of forensic and investigative science
    • /
    • v.1 no.2
    • /
    • pp.5-19
    • /
    • 2006
  • Data mining is an information extraction activity to discover hidden facts contained in databases. Using a combination of machine learning, statistical analysis, modeling techniques and database technology, data mining finds patterns and subtle relationships in data and infers rules that allow the prediction of future results. Typical applications include market segmentation, customer profiling, fraud detection, evaluation of retail promotions, and credit risk analysis. Law enforcement agencies deal with mass data to investigate the crime and its amount is increasing due to the development of processing the data by using computer. Now new challenge to discover knowledge in that data is confronted to us. It can be applied in criminal investigation to find offenders by analysis of complex and relational data structures and free texts using their criminal records or statement texts. This study was aimed to evaluate possibile application of data mining and its limitation in practical criminal investigation. Clustering of the criminal cases will be possible in habitual crimes such as fraud and burglary when using data mining to identify the crime pattern. Neural network modelling, one of tools in data mining, can be applied to differentiating suspect's photograph or handwriting with that of convict or criminal profiling. A case study of in practical insurance fraud showed that data mining was useful in organized crimes such as gang, terrorism and money laundering. But the products of data mining in criminal investigation should be cautious for evaluating because data mining just offer a clue instead of conclusion. The legal regulation is needed to control the abuse of law enforcement agencies and to protect personal privacy or human rights.

  • PDF