• Title/Summary/Keyword: clustered back trajectory

Search Result 4, Processing Time 0.019 seconds

Ionic Compositions of PM10 and PM2.5 Related to Meteorological Conditions at the Gosan Site, Jeju Island from 2013 to 2015

  • Song, Jung-Min;Bu, Jun-Oh;Lee, Jae-Yun;Kim, Won-Hyung;Kang, Chang-Hee
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.4
    • /
    • pp.313-321
    • /
    • 2017
  • $PM_{10}$ and $PM_{2.5}$ were collected at the Gosan Site on Jeju Island from 2013 to 2015, and their ionic and elemental species were analyzed to examine the variations in their chemical compositional characteristics related to different meteorological conditions. Concentrations of nss-$SO_4{^{2-}}$ and $NH_4{^+}$ were respectively 6.5 and 4.7 times higher in the fine particle mode ($PM_{2.5}$) compared to the coarse particle mode ($PM_{10-2.5}$), however $NO_3{^-}$ concentrations were 2.4 times higher in the coarse mode compared to the fine particle mode. During Asian dust days, the concentrations of nss-$Ca^{2+}$ and $NO_3{^-}$ increased to 8.2 and 5.0 times higher in $PM_{10}$, and 3.5 and 6.0 times higher in $PM_{2.5}$, respectively. During haze days, the concentrations of secondary pollutants increased by 3.1-4.7 and 3.2-7.9 in $PM_{10}$ and $PM_{2.5}$, respectively, and they were, respectively, 1.2-2.1 and 0.9-2.1 times higher on mist days. The aerosols were acidified largely by sulfuric and nitric acids, and neutralized mainly by ammonia in the fine particle mode during the haze days, but neutralized by calcium carbonate in coarse particle mode during the Asian dust days. Clustered back trajectory analysis showed that concentrations of nss-$SO_4{^{2-}}$, $NO_3{^-}$, and $NH_4{^+}$ were relatively high when air masses travelled from China.

Chemical characteristics of wet precipitation in urban and mountainous sites of Jeju Island

  • Bu, Jun-Oh;Song, Jung-Min;Park, Sook-Young;Kang, Hee-Ju;Kang, Chang-Hee
    • Analytical Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.33-41
    • /
    • 2020
  • Wet precipitation samples were collected in Jeju City and Mt. Halla-1100 site (a site at an altitude of 1100 m on Mt. Halla) during 2011-2013, and their major ionic species were analyzed to examine the chemical composition and characteristics. A comparison of ion balance, electric conductivity, and acid fraction of precipitation revealed correlation coefficients in the range of r = 0.950~0.991, thereby implying the high quality of analytical data. Volume-weighted mean pH and electric conductivity corresponded to 4.86 and 25.5 µS/cm for Jeju City, and 4.98 and 15.1 µS/cm for Mt. Halla-1100 site, respectively. Ionic strengths of the wet precipitation in Jeju City and Mt. Halla-1100 site corresponded 0.3 ± 0.5 and 0.2 ± 0.2 mM, respectively, thereby indicating that more than 30 % of total precipitation was within a pure precipitation criteria. The precipitation with a pH range of 4.5 - 5.0 corresponded to 40.8 % in Jeju City, while the precipitation with a pH range of 5.0 - 5.5 corresponded to 56.9 % in Mt. Halla-1100 site, thereby indicating slightly more weak acidity than that in Jeju city. The volume-weighted mean concentration (µeq/L) of ionic species was in the order of Na+ > Cl- > nss-SO42- > NO3- > Mg2+ > NH4+ > H+ > nss-Ca2+ > PO43- > K+ > CH3COO- > HCOO- > NO2- > F- > HCO3- > CH3SO3- at Jeju City area, while it corresponded to Na+ > Cl- > nss-SO42- > NO3- > NH4+ > H+ > Mg2+ > nss-Ca2+ > PO43- > CH3COO- > K+ > HCOO- > NO2- > F- > HCO3- > CH3SO3- at Mt. Halla-1100 site. The compositions of sea salts (Na+, Cl-, Mg2+) and secondary pollutants (NH4+, nss-SO42-, NO3-) corresponded to 66.1 % and 21.8 %, respectively, in Jeju City and, 49.9 % and 31.5 %, respectively, in Mt. Halla-1100 site. The acidity contributions in Jeju City and Mt. Halla-1100 site by inorganic acids, i.e., sulfuric acid and nitric acid, corresponded to 93.9 % and 91.4 %, respectively, and the acidity contributions by organic acids corresponded to 6.1 % and 8.6 %, respectively. The neutralization factors in Jeju City and Mt. Halla1100 site by ammonia corresponded to 29.8 % and 30.1 %, respectively, whereas the neutralization factors by calcium carbonate corresponded to 20.5 % and 25.2 %, respectively. From the clustered back trajectory analysis, the concentrations of most ionic components were higher when the airflow pathways were moved from the continent to Jeju area.

Influences of Asian Dust, Haze, and Mist Events on Chemical Compositions of Fine Particulate Matters at Gosan Site, Jeju Island in 2014 (황사, 연무, 박무 현상이 미세먼지 화학조성에 미치는 영향: 2014년 제주도 고산지역 측정)

  • Song, Jung-Min;Bu, Jun-Oh;Yang, Seung-Hyuk;Lee, Jae-Yun;Kim, Won-Hyung;Kang, Chang-Hee
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.1
    • /
    • pp.67-81
    • /
    • 2016
  • In order to examine the variation characteristics of chemical compositions in accordance with the different meteorological conditions, $PM_{10}$ and $PM_{2.5}$ were collected at Gosan site of Jeju Island in 2014, and then their ionic and elemental species were analyzed. The concentrations of nss-$SO{_4}^{2-}$ and $NH_4{^+}$ were respectively 4.3 and 3.3 times higher in fine particle mode ($PM_{2.5}$) compared to coarse particle mode ($PM_{10-2.5}$), however $NO_3{^-}$ concentration was 1.6 times higher in coarse mode compared to fine particle mode. During Asian dust days, the concentrations of nss-$Ca^{2+}$ and $NO_3{^-}$ increased highly as 7.7 and 4.5 times in coarse particle mode, and 3.0 and 4.9 times higher in fine particles, respectively. Especially, the concentrations of the crustal species (Al, Fe, Ca, K, Mn, Ba, Sr, etc.) indicated a noticeable increase during the Asian dust days. For the haze days, the concentrations of secondary pollutants increased 2.2~2.7 and 2.9~6.0 times in coarse and fine particles, respectively, and they were 0.8~1.1 and 1.8~2.4 times, respectively, during the mist days. The aerosols were acidified largely by sulfuric and nitric acids, and neutralized mainly by ammonia in fine particle mode during the haze days, but neutralized by calcium carbonate in coarse particle mode during the Asian dust days. The clustered back trajectory analysis showed that the concentrations of nss-$SO{_4}^{2-}$, $NO_3{^-}$, and $NH_4{^+}$ were relatively high when the inflow pathway of air mass was from the southern part of China.

Composition and emission characteristics of fine particulate matters at the 1100 Site of Mt. Halla during 2011-2012 (한라산 1100고지 대기 미세먼지의 조성 및 배출 특성: 2011~2012년 측정)

  • Song, Jung-Min;Bu, Jun-Oh;Kim, Won-Hyung;Ko, Hee-Jung;Kang, Chang-Hee
    • Analytical Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.209-218
    • /
    • 2016
  • PM10 and PM2.5 samples were collected at the 1100 site of Mt. Halla in Jeju Island during 2011~2012, and their ionic and elemental species were analyzed, in order to investigate the characteristics of emission sources as well as aerosol compositions. The mass concentrations of PM10 and PM2.5 were 22.0±13.1 µg/m3 and 11.3±6.1 µg/m3, respectively, showing 2.4~2.6 times lower than those of the capital city area of Korea. The composition ratios of major secondary pollutants (nss-SO42−, NH4+, and NO3) were the highest as 85.5 % for PM10 and 91.3 % for PM2.5, and followed by the order of marine (Na+, Cl, and Mg2+), organic acid (HCOO and CH3COO), and soil (nss-Ca2+) sources. Among the elemental species in PM10, soil-originated components (Al, Fe, and Ca) were consisted of 50.9 %, which was higher proportion than marine and anthropogenic elements. The acidification of the fine particulate matters was found to be influenced mostly by sulfuric and nitric acids, and these acids were mainly neutralized by calcium carbonate in PM10 and by ammonia in PM2.5. The clustered back trajectories showed that 47 % of total air mass inflows was from the China, and the concentrations of NO3 and nss-Ca2+ were especially high corresponding to the inflows.