• Title/Summary/Keyword: cluster method

Search Result 2,498, Processing Time 0.031 seconds

A Software Update Method Using Clustering WSNs (클러스터링을 이용한 SW 업데이트 방법)

  • Jeong, Hyeyeong;Ahn, Byoungchul
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.4
    • /
    • pp.245-251
    • /
    • 2014
  • Wireless Sensor Networks(WSNs) are applied to many monitoring applications. Present sensor nodes can perform many functions at the same time and contain complex software. During the lifetime of sensor nodes, they are required to reprogram their software because of their new functions, software, software bug fixes. The nodes are inaccessible physically or it is very difficult to upgrade their software by one by one. To upgrade the software of sensor nodes in WSNs remotely, this paper presents an energy efficient method by selecting an optimal relay node. The CHR(Cluster Head Relay) method is compared with SPIN and RANDOM method. Three methods are simulated in NS-2 with the same environmental parameters. Simulation results show that CHR shows faster update time and less power consumption compared with other two methods.

Shot Group and Representative Shot Frame Detection using Similarity-based Clustering

  • Lee, Gye-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.9
    • /
    • pp.37-43
    • /
    • 2016
  • This paper introduces a method for video shot group detection needed for efficient management and summary of video. The proposed method detects shots based on low-level visual properties and performs temporal and spatial clustering based on visual similarity of neighboring shots. Shot groups created from temporal clustering are further clustered into small groups with respect to visual similarity. A set of representative shot frames are selected from each cluster of the smaller groups representing a scene. Shots excluded from temporal clustering are also clustered into groups from which representative shot frames are selected. A number of video clips are collected and applied to the method for accuracy of shot group detection. We achieved 91% of accuracy of the method for shot group detection. The number of representative shot frames is reduced to 1/3 of the total shot frames. The experiment also shows the inverse relationship between accuracy and compression rate.

Customer Clustering Method Using Repeated Small-sized Clustering to improve the Classifying Ability of Typical Daily Load Profile (일일 대표 부하패턴의 분별력을 높이기 위한 반복적인 소규모 군집화를 이용한 고객 군집화 방법)

  • Kim, Young-Il;Song, Jae-Ju;Oh, Do-Eun;Jung, Nam-Joon;Yang, Il-Kwon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.11
    • /
    • pp.2269-2274
    • /
    • 2009
  • Customer clustering method is used to make a TDLP (typical daily load profile) to estimate the quater hourly load profile of non-AMR (Automatic Meter Reading) customer. In this paper, repeated small-sized clustering method is supposed to improve the classifying ability of TDLP. K-means algorithm is well-known clustering technology of data mining. To reduce the local maxima of k-means algorithm, proposed method clusters average load profiles to small-sized clusters and selects the highest error rated cluster and clusters this to small-sized clusters repeatedly to minimize the local maxima.

Obstacles modeling method in cluttered environments using satellite images and its application to path planning for USV

  • Shi, Binghua;Su, Yixin;Zhang, Huajun;Liu, Jiawen;Wan, Lili
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.202-210
    • /
    • 2019
  • The obstacles modeling is a fundamental and significant issue for path planning and automatic navigation of Unmanned Surface Vehicle (USV). In this study, we propose a novel obstacles modeling method based on high resolution satellite images. It involves two main steps: extraction of obstacle features and construction of convex hulls. To extract the obstacle features, a series of operations such as sea-land segmentation, obstacles details enhancement, and morphological transformations are applied. Furthermore, an efficient algorithm is proposed to mask the obstacles into convex hulls, which mainly includes the cluster analysis of obstacles area and the determination rules of edge points. Experimental results demonstrate that the models achieved by the proposed method and the manual have high similarity. As an application, the model is used to find the optimal path for USV. The study shows that the obstacles modeling method is feasible, and it can be applied to USV path planning.

Weak Lensing Mass Map Reconstruction of Merging Clusters with Convolutional Neural Network

  • Park, Sangnam;Jee, James M.;Hong, Sungwook E.;Bak, Dongsu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.75.1-75.1
    • /
    • 2019
  • We introduce a novel method for reconstructing the projected dark matter mass maps of merging galaxy clusters by applying the convolutional neural network (CNN) to their weak lensing maps. We generate synthesized grayscale images from given weak lensing maps that preserve their averaged galaxy ellipticity. We then apply them to multi-layered CNN with architectures of alternating convolution and trans-convolution filters to predict the mass maps. We train our architecture with 1,000 Subaru/Suprime-Cam mock weak lensing maps, and our method have better mass map prediction than the Kaiser-Squires method with the following three aspects: (1) better pixel-to-pixel correlation, (2) more accurate finding of density peak position, and (3) free from mass-sheet degeneracy. We also apply our method to the HST weak lensing map of the El Gordo cluster and compare our result to the previous studies.

  • PDF

Determinants of Consumer Preference by type of Accommodation: Two Step Cluster Analysis (이단계 군집분석에 의한 농촌관광 편의시설 유형별 소비자 선호 결정요인)

  • Park, Duk-Byeong;Yoon, Yoo-Shik;Lee, Min-Soo
    • Journal of Global Scholars of Marketing Science
    • /
    • v.17 no.3
    • /
    • pp.1-19
    • /
    • 2007
  • 1. Purpose Rural tourism is made by individuals with different characteristics, needs and wants. It is important to have information on the characteristics and preferences of the consumers of the different types of existing rural accommodation. The stud aims to identify the determinants of consumer preference by type of accommodations. 2. Methodology 2.1 Sample Data were collected from 1000 people by telephone survey with three-stage stratified random sampling in seven metropolitan areas in Korea. Respondents were chosen by sampling internal on telephone book published in 2006. We surveyed from four to ten-thirty 0'clock afternoon so as to systematic sampling considering respondents' life cycle. 2.2 Two-step cluster Analysis Our study is accomplished through the use of a two-step cluster method to classify the accommodation in a reduced number of groups, so that each group constitutes a type. This method had been suggested as appropriate in clustering large data sets with mixed attributes. The method is based on a distance measure that enables data with both continuous and categorical attributes to be clustered. This is derived from a probabilistic model in which the distance between two clusters in equivalent to the decrease in log-likelihood function as a result of merging. 2.3 Multinomial Logit Analysis The estimation of a Multionmial Logit model determines the characteristics of tourist who is most likely to opt for each type of accommodation. The Multinomial Logit model constitutes an appropriate framework to explore and explain choice process where the choice set consists of more than two alternatives. Due to its ease and quick estimation of parameters, the Multinomial Logit model has been used for many empirical studies of choice in tourism. 3. Findings The auto-clustering algorithm indicated that a five-cluster solution was the best model, because it minimized the BIC value and the change in them between adjacent numbers of clusters. The accommodation establishments can be classified into five types: Traditional House, Typical Farmhouse, Farmstay house for group Tour, Log Cabin for Family, and Log Cabin for Individuals. Group 1 (Traditional House) includes mainly the large accommodation establishments, i.e. those with ondoll style room providing meals and one shower room on family tourist, of original construction style house. Group 2 (Typical Farmhouse) encompasses accommodation establishments of Ondoll rooms and each bathroom providing meals. It includes, in other words, the tourist accommodations Known as "rural houses." Group 3 (Farmstay House for Group) has accommodation establishments of Ondoll rooms not providing meals and self cooking facilities, large room size over five persons. Group 4 (Log Cabin for Family) includes mainly the popular accommodation establishments, i.e. those with Ondoll style room with on shower room on family tourist, of western styled log house. While the accommodations in this group are not defined as regards type of construction, the group does include all the original Korean style construction, Finally, group 5 (Log Cabin for Individuals)includes those accommodations that are bedroom western styled wooden house with each bathroom. First Multinomial Logit model is estimated including all the explicative variables considered and taking accommodation group 2 as base alternative. The results show that the variables and the estimated values of the parameters for the model giving the probability of each of the five different types of accommodation available in rural tourism village in Korea, according to the socio-economic and trip related characteristics of the individuals. An initial observation of the analysis reveals that none of variables income, the number of journey, distance, and residential style of house is explicative in the choice of rural accommodation. The age and accompany variables are significant for accommodation establishment of group 1. The education and rural residential experience variables are significant for accommodation establishment of groups 4 and 5. The expenditure and marital status variables are significant for accommodation establishment of group 4. The gender and occupation variable are significant for accommodation establishment of group 3. The loyalty variable is significant for accommodation establishment of groups 3 and 4. The study indicates that significant differences exist among the individuals who choose each type of accommodation at a destination. From this investigation is evident that several profiles of tourists can be attracted by a rural destination according to the types of existing accommodations at this destination. Besides, the tourist profiles may be used as the basis for investment policy and promotion for each type of accommodation, making use in each case of the variables that indicate a greater likelihood of influencing the tourist choice of accommodation.

  • PDF

A Hierarchical Cluster Tree Based Fast Searching Algorithm for Raman Spectroscopic Identification (계층 클러스터 트리 기반 라만 스펙트럼 식별 고속 검색 알고리즘)

  • Kim, Sun-Keum;Ko, Dae-Young;Park, Jun-Kyu;Park, Aa-Ron;Baek, Sung-June
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.562-569
    • /
    • 2019
  • Raman spectroscopy has been receiving increased attention as a standoff explosive detection technique. In addition, there is a growing need for a fast search method that can identify raman spectrum for measured chemical substances compared to known raman spectra in large database. By far the most simple and widely used method is to calculate and compare the Euclidean distance between the given spectrum and the spectra in a database. But it is non-trivial problem because of the inherent high dimensionality of the data. One of the most serious problems is the high computational complexity of searching for the closet spectra. To overcome this problem, we presented the MPS Sort with Sorted Variance+PDS method for the fast algorithm to search for the closet spectra in the last paper. the proposed algorithm uses two significant features of a vector, mean values and variance, to reject many unlikely spectra and save a great deal of computation time. In this paper, we present two new methods for the fast algorithm to search for the closet spectra. the PCA+PDS algorithm reduces the amount of computation by reducing the dimension of the data through PCA transformation with the same result as the distance calculation using the whole data. the Hierarchical Cluster Tree algorithm makes a binary hierarchical tree using PCA transformed spectra data. then it start searching from the clusters closest to the input spectrum and do not calculate many spectra that can not be candidates, which save a great deal of computation time. As the Experiment results, PCA+PDS shows about 60.06% performance improvement for the MPS Sort with Sorted Variance+PDS. also, Hierarchical Tree shows about 17.74% performance improvement for the PCA+PDS. The results obtained confirm the effectiveness of the proposed algorithm.

Empirical Analysis on Rao-Scott First Order Adjustment for Two Population Homogeneity test Based on Stratified Three-Stage Cluster Sampling with PPS

  • Heo, Sunyeong
    • Journal of Integrative Natural Science
    • /
    • v.7 no.3
    • /
    • pp.208-213
    • /
    • 2014
  • National-wide and/or large scale sample surveys generally use complex sample design. Traditional Pearson chi-square test is not appropriate for the categorical complex sample data. Rao-Scott suggested an adjustment method for Pearson chi-square test, which uses the average of eigenvalues of design matrix of cell probabilities. This study is to compare the efficiency of Rao-Scott first order adjusted test to Wald test for homogeneity between two populations using 2009 Gyeongnam regional education offices's customer satisfaction survey (2009 GREOCSS) data. The 2009 GREOCSS data were collected based on stratified three-stage cluster sampling with probability proportional to size. The empirical results show that the Rao-Scott adjusted test statistic using only the variances of cell probabilities is very close to the Wald test statistic, which uses the covariance matrix of cell probabilities, under the 2009 GREOCSS data based. However it is necessary to be cautious to use the Rao-Scott first order adjusted test statistic in the place of Wald test because its efficiency is decreasing as the relative variance of eigenvalues of the design matrix of cell probabilities is increasing, specially more when the number of degrees of freedom is small.

Genetic Diversity and Discrimination of Astragalus Membranaceus Bunge and A. Membranaceus var. Mogholicus Using RAPD Markers (RAPD마커를 이용한 황기의 유전적 다양성 및 기원판별)

  • Bang Kyang Hwan;Huh Man Kyu;Cho Jean Hyeang
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.3
    • /
    • pp.825-829
    • /
    • 2004
  • This study was carried out to differentiate the origins of Astragalus membranaceus Bunge and A. membranaceus Bunge var. mogholicus Nakai. To identify the variation of the RAPD patterns between domestic and foreign Astragalus species, 40 random primers were applied to ten accessions of A. membranaceus and six accessions of A. membranaceus var. mogholicus genomic DNA, respectively, Ten primers of 40 primers could be used to discriminate the origins and 33 polymorph isms among 44 scored DNA fragments (33 fragments are specific for A. membranaceus and A. membranaceus var. mogholicus) were generated using these primers, 75.0 % of which were polymorphic. Especially, three primers of ten primers, OPA17, OPA11 and OPB11, were useful to differentiate between domestic and foreign Astragalus species. RAPD data from the 10 primers were used for cluster analysis and cluster analysis of RAPD markers showed that the two groups are distinct genetically. Consequently, RAPD analysis was a useful method to discriminate between A. membranaceus and A. membranaceus var. mogholicus.

A Study on DDoS Attack Mitigation Technique in MANET (MANET 환경에서 DDoS 공격 완화 기법에 관한 연구)

  • Yang, Hwan-Seok;Yoo, Seung-Jae
    • Convergence Security Journal
    • /
    • v.12 no.1
    • /
    • pp.3-8
    • /
    • 2012
  • MANET composed wireless nodes without fixed infrastructure provides high flexibility, but it has weak disadvantage to various attack. It has big weakness to DDoS attack because every node perform packet forwarding especially. In this paper, packet transmission information control technique is proposed to reduce damage of DDoS attack in MANET and search location of attacker when DDoS attacks occur. Hierarchical structure using gateway node is adopted for protect a target of attack in this study. Gateway node in cluster is included like destination nodes surely when source nodes route path to destination nodes and it protects destination nodes. We confirmed efficiency by comparing proposed method in this study with CUSUM and measured the quantity consumed memory of cluster head to evaluate efficiency of information control using to location tracing.