• Title/Summary/Keyword: cluster method

Search Result 2,498, Processing Time 0.031 seconds

Applications of Cluster Analysis in Biplots (행렬도에서 군집분석의 활용)

  • Choi, Yong-Seok;Kim, Hyoung-Young
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.1
    • /
    • pp.65-76
    • /
    • 2008
  • Biplots are the multivariate analogue of scatter plots. They approximate the multivariate distribution of a sample in a few dimensions, typically two, and they superimpose on this display representations of the variables on which the samples are measured(Gower and Hand, 1996, Chapter 1). And the relationships between the observations and variables can be easily seen. Thus, biplots are useful for giving a graphical description of the data. However, this method does not give some concise interpretations between variables and observations when the number of observations are large. Therefore, in this study, we will suggest to interpret the biplot analysis by applying the K-means clustering analysis. It shows that the relationships between the clusters and variables can be easily interpreted. So, this method is more useful for giving a graphical description of the data than using raw data.

Clustering XML Documents Considering The Weight of Large Items in Clusters (클러스터의 주요항목 가중치 기반 XML 문서 클러스터링)

  • Hwang, Jeong-Hee
    • The KIPS Transactions:PartD
    • /
    • v.14D no.1 s.111
    • /
    • pp.1-8
    • /
    • 2007
  • As the web document of XML, an exchange language of data in the advanced Internet, is increasing, a target of information retrieval becomes the web documents. Therefore, there we researches on structure, integration and retrieval of XML documents. This paper proposes a clustering method of XML documents based on frequent structures, as a basic research to efficiently process query and retrieval. To do so, first, trees representing XML documents are decomposed and we extract frequent structures from them. Second, we perform clustering considering the weight of large items to adjust cluster creation and cluster cohesion, considering frequent structures as items of transactions. Third, we show the excellence of our method through some experiments which compare which the previous methods.

Distributed Search of Swarm Robots Using Tree Structure in Unknown Environment (미지의 환경에서 트리구조를 이용한 군집로봇의 분산 탐색)

  • Lee, Gi Su;Joo, Young Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.2
    • /
    • pp.285-292
    • /
    • 2018
  • In this paper, we propose a distributed search of a cluster robot using tree structure in an unknown environment. In the proposed method, the cluster robot divides the unknown environment into 4 regions by using the LRF (Laser Range Finder) sensor information and divides the maximum detection distance into 4 regions, and detects feature points of the obstacle. Also, we define the detected feature points as Voronoi Generators of the Voronoi Diagram and apply the Voronoi diagram. The Voronoi Space, the Voronoi Partition, and the Voronoi Vertex, components of Voronoi, are created. The generated Voronoi partition is the path of the robot. Voronoi vertices are defined as each node and consist of the proposed tree structure. The root of the tree is the starting point, and the node with the least significant bit and no children is the target point. Finally, we demonstrate the superiority of the proposed method through several simulations.

An Ensemble Clustering Algorithm based on a Prior Knowledge (사전정보를 활용한 앙상블 클러스터링 알고리즘)

  • Ko, Song;Kim, Dae-Won
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.2
    • /
    • pp.109-121
    • /
    • 2009
  • Although a prior knowledge is a factor to improve the clustering performance, it is dependant on how to use of them. Especial1y, when the prior knowledge is employed in constructing initial centroids of cluster groups, there should be concerned of similarities of a prior knowledge. Despite labels of some objects of a prior knowledge are identical, the objects whose similarities are low should be separated. By separating them, centroids of initial group were not fallen in a problem which is collision of objects with low similarities. There can use the separated prior knowledge by various methods such as various initializations. To apply association rule, proposed method makes enough cluster group number, then the centroids of initial groups could constructed by separated prior knowledge. Then ensemble of the various results outperforms what can not be separated.

Sensor clustering technique for practical structural monitoring and maintenance

  • Celik, Ozan;Terrell, Thomas;Gul, Mustafa;Catbas, F. Necati
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.2
    • /
    • pp.273-295
    • /
    • 2018
  • In this study, an investigation of a damage detection methodology for global condition assessment is presented. A particular emphasis is put on the utilization of wireless sensors for more practical, less time consuming, less expensive and safer monitoring and eventually maintenance purposes. Wireless sensors are deployed with a sensor roving technique to maintain a dense sensor field yet requiring fewer sensors. The time series analysis method called ARX models (Auto-Regressive models with eXogeneous input) for different sensor clusters is implemented for the exploration of artificially induced damage and their locations. The performance of the technique is verified by making use of the data sets acquired from a 4-span bridge-type steel structure in a controlled laboratory environment. In that, the free response vibration data of the structure for a specific sensor cluster is measured by both wired and wireless sensors and the acceleration output of each sensor is used as an input to ARX model to estimate the response of the reference channel of that cluster. Using both data types, the ARX based time series analysis method is shown to be effective for damage detection and localization along with the interpretations and conclusions.

A Study on the Security Framework in IoT Services for Unmanned Aerial Vehicle Networks (군집 드론망을 통한 IoT 서비스를 위한 보안 프레임워크 연구)

  • Shin, Minjeong;Kim, Sungun
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.8
    • /
    • pp.897-908
    • /
    • 2018
  • In this paper, we propose a security framework for a cluster drones network using the MAVLink (Micro Air Vehicle Link) application protocol based on FANET (Flying Ad-hoc Network), which is composed of ad-hoc networks with multiple drones for IoT services such as remote sensing or disaster monitoring. Here, the drones belonging to the cluster construct a FANET network acting as WTRP (Wireless Token Ring Protocol) MAC protocol. Under this network environment, we propose an efficient algorithm applying the Lightweight Encryption Algorithm (LEA) to the CTR (Counter) operation mode of WPA2 (WiFi Protected Access 2) to encrypt the transmitted data through the MAVLink application. And we study how to apply LEA based on CBC (Cipher Block Chaining) operation mode used in WPA2 for message security tag generation. In addition, a modified Diffie-Hellman key exchange method is approached to generate a new key used for encryption and security tag generation. The proposed method and similar methods are compared and analyzed in terms of efficiency.

Enhancing the Performance of Recommender Systems Using Online Review Clusters (온라인 리뷰 클러스터를 이용한 추천 시스템 성능 향상)

  • Noh, Giseop;Oh, Hayoung;Lee, Jaehoon
    • Journal of KIISE
    • /
    • v.45 no.2
    • /
    • pp.126-133
    • /
    • 2018
  • The recommender system (RS) has emerged as a solution to overcome the constraints of excessive information provision and to maximize profit and reputation for information providers. Although the RS can be implemented with various approaches, there is no study on how to appropriately utilize the information generated from the review of the recommended object. We propose a method to improve the performance of RS by using cluster information generated from online review. We implemented the proposed method and experimented with real data, and confirmed that the performance is significantly improved compared to the existing approaches.

Double K-Means Clustering (이중 K-평균 군집화)

  • 허명회
    • The Korean Journal of Applied Statistics
    • /
    • v.13 no.2
    • /
    • pp.343-352
    • /
    • 2000
  • In this study. the author proposes a nonhierarchical clustering method. called the "Double K-Means Clustering", which performs clustering of multivariate observations with the following algorithm: Step I: Carry out the ordinary K-means clmitering and obtain k temporary clusters with sizes $n_1$,... , $n_k$, centroids $c_$1,..., $c_k$ and pooled covariance matrix S. $\bullet$ Step II-I: Allocate the observation x, to the cluster F if it satisfies ..... where N is the total number of observations, for -i = 1, . ,N. $\bullet$ Step II-2: Update cluster sizes $n_1$,... , $n_k$, centroids $c_$1,..., $c_k$ and pooled covariance matrix S. $\bullet$ Step II-3: Repeat Steps II-I and II-2 until the change becomes negligible. The double K-means clustering is nearly "optimal" under the mixture of k multivariate normal distributions with the common covariance matrix. Also, it is nearly affine invariant, with the data-analytic implication that variable standardizations are not that required. The method is numerically demonstrated on Fisher's iris data.

  • PDF

A Study on Secure Routing Protocol using Multi-level Architecture in Mobile Ad Hoc Network (Multi-level 구조를 이용한 보안 라우팅 프로토콜에 관한 연구)

  • Yang, Hwan Seok
    • Convergence Security Journal
    • /
    • v.14 no.7
    • /
    • pp.17-22
    • /
    • 2014
  • Wireless Ad hoc Network is threatened from many types of attacks because of its open structure, dynamic topology and the absence of infrastructure. Attacks by malicious nodes inside the network destroy communication path and discard packet. The damage is quite large and detecting attacks are difficult. In this paper, we proposed attack detection technique using secure authentication infrastructure for efficient detection and prevention of internal attack nodes. Cluster structure is used in the proposed method so that each nodes act as a certificate authority and the public key is issued in cluster head through trust evaluation of nodes. Symmetric Key is shared for integrity of data between the nodes and the structure which adds authentication message to the RREQ packet is used. ns-2 simulator is used to evaluate performance of proposed method and excellent performance can be performed through the experiment.

Drought Classification Method for Jeju Island using Standard Precipitation Index (표준강수지수를 활용한 제주도 가뭄의 공간적 분류 방법 연구)

  • Park, Jae-Kyu;Lee, Jun-ho;Yang, Sung-Kee;Kim, Min-Chul;Yang, Se-Chang
    • Journal of Environmental Science International
    • /
    • v.25 no.11
    • /
    • pp.1511-1519
    • /
    • 2016
  • Jeju Island relies on subterranean water for over 98% of its water resources, and it is therefore necessary to continue to perform studies on drought due to climate changes. In this study, the representative standardized precipitation index (SPI) is classified by various criteria, and the spatial characteristics and applicability of drought in Jeju Island are evaluated from the results. As the result of calculating SPI of 4 weather stations (SPI 3, 6, 9, 12), SPI 12 was found to be relatively simple compared to SPI 6. Also, it was verified that the fluctuation of SPI was greater fot short-term data, and that long-term data was relatively more useful for judging extreme drought. Cluster analysis was performed using the K-means technique, with two variables extracted as the result of factor analysis, and the clustering was terminated with seven-time repeated calculations, and eventually two clusters were formed.