• Title/Summary/Keyword: cluster method

Search Result 2,497, Processing Time 0.025 seconds

Cluster-based Image Retrieval Method Using RAGMD (RAGMD를 이용한 클러스터 기반의 영상 검색 기법)

  • Jung, Sung-Hwan;Lee, Woo-Sun
    • The KIPS Transactions:PartB
    • /
    • v.9B no.1
    • /
    • pp.113-118
    • /
    • 2002
  • This paper presents a cluster-based image retrieval method. It retrieves images from a related cluster after classifying images into clusters using RAGMD, a clustering technique. When images are retrieved, first they are retrieved not from the whole image database one by one but from the similar cluster, a similar small image group with a query image. So it gives us retrieval-time reduction, keeping almost the same precision with the exhaustive retrieval. In the experiment using an image database consisting of about 2,400 real images, it shows that the proposed method is about 18 times faster than 7he exhaustive method with almost same precision and it can retrieve more similar images which belong to the same class with a query image.

Automatic Construction of Reduced Dimensional Cluster-based Keyword Association Networks using LSI (LSI를 이용한 차원 축소 클러스터 기반 키워드 연관망 자동 구축 기법)

  • Yoo, Han-mook;Kim, Han-joon;Chang, Jae-young
    • Journal of KIISE
    • /
    • v.44 no.11
    • /
    • pp.1236-1243
    • /
    • 2017
  • In this paper, we propose a novel way of producing keyword networks, named LSI-based ClusterTextRank, which extracts significant key words from a set of clusters with a mutual information metric, and constructs an association network using latent semantic indexing (LSI). The proposed method reduces the dimension of documents through LSI, decomposes documents into multiple clusters through k-means clustering, and expresses the words within each cluster as a maximal spanning tree graph. The significant key words are identified by evaluating their mutual information within clusters. Then, the method calculates the similarities between the extracted key words using the term-concept matrix, and the results are represented as a keyword association network. To evaluate the performance of the proposed method, we used travel-related blog data and showed that the proposed method outperforms the existing TextRank algorithm by about 14% in terms of accuracy.

Selection of An Initial Training Set for Active Learning Using Cluster-Based Sampling (능동적 학습을 위한 군집기반 초기훈련집합 선정)

  • 강재호;류광렬;권혁철
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.7
    • /
    • pp.859-868
    • /
    • 2004
  • We propose a method of selecting initial training examples for active learning so that it can reach high accuracy faster with fewer further queries. Our method is based on the assumption that an active learner can reach higher performance when given an initial training set consisting of diverse and typical examples rather than similar and special ones. To obtain a good initial training set, we first cluster examples by using k-means clustering algorithm to find groups of similar examples. Then, a representative example, which is the closest example to the cluster's centroid, is selected from each cluster. After these representative examples are labeled by querying to the user for their categories, they can be used as initial training examples. We also suggest a method of using the centroids as initial training examples by labeling them with categories of corresponding representative examples. Experiments with various text data sets have shown that the active learner starting from the initial training set selected by our method reaches higher accuracy faster than that starting from randomly generated initial training set.

Data Modeling using Cluster Based Fuzzy Model Tree (클러스터 기반 퍼지 모델트리를 이용한 데이터 모델링)

  • Lee, Dae-Jong;Park, Jin-Il;Park, Sang-Young;Jung, Nahm-Chung;Chun, Meung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.5
    • /
    • pp.608-615
    • /
    • 2006
  • This paper proposes a fuzzy model tree consisting of local linear models using fuzzy cluster for data modeling. First, cluster centers are calculated by fuzzy clustering method using all input and output attributes. And then, linear models are constructed at internal nodes with fuzzy membership values between centers and input attributes. The expansion of internal node is determined by comparing errors calculated in parent node with ones in child node, respectively. As a final step, data prediction is performed with a linear model having the highest fuzzy membership value between input attributes and cluster centers in leaf nodes. To show the effectiveness of the proposed method, we have applied our method to various dataset. Under various experiments, our proposed method shows better performance than conventional model tree and artificial neural networks.

Representative Labels Selection Technique for Document Cluster using WordNet (문서 클러스터를 위한 워드넷기반의 대표 레이블 선정 방법)

  • Kim, Tae-Hoon;Sohn, Mye
    • Journal of Internet Computing and Services
    • /
    • v.18 no.2
    • /
    • pp.61-73
    • /
    • 2017
  • In this paper, we propose a Documents Cluster Labeling method using information content of words in clusters to understand what the clusters imply. To do so, we calculate the weight and frequency of the words. These two measures are used to determine the weight among the words in the cluster. As a nest step, we identify the candidate labels using the WordNet. At this time, the candidate labels are matched to least common hypernym of the words in the cluster. Finally, the representative labels are determined with respect to information content of the words and the weight of the words. To prove the superiority of our method, we perform the heuristic experiment using two kinds of measures, named the suitability of the candidate label ($Suitability_{cl}$) and the appropriacy of representative label ($Appropriacy_{rl}$). In applying the method proposed in this research, in case of suitability of the candidate label, it decreases slightly compared with existing methods, but the computational cost is about 20% of the conventional methods. And we confirmed that appropriacy of the representative label is better results than the existing methods. As a result, it is expected to help data analysts to interpret the document cluster easier.

An Online Scaling Method for Improving the Availability of a Database Cluster (데이터베이스 클러스터의 가용성 향상을 위한 온라인 확장 기법)

  • Lee, Chung-Ho;Jang, Yong-Il;Bae, Hae-Yeong
    • The KIPS Transactions:PartD
    • /
    • v.10D no.6
    • /
    • pp.935-948
    • /
    • 2003
  • An online scaling method adds new nodes to the shared-nothing database cluster and makes tables be reorganized while the system is running. The objective is to share the workload with many nodes and increase the capacity of cluster systems. The existing online scaling method, however, has two problems. One is the degradation of response time and transactions throughput due to the additional overheads of data transfer and replica's condidtency. The other is and inefficient recovery mechanism in which the overall scaling transaction is aborted by a fault. These problems deteriorate the availability of shared-nothing database cluster. To avoid the additional overheads throughout the scaling period, our scalingmethod consists of twophases : a parallel data transfer phase and a combination phase. The parallel data transferred datausing reduces the size of data transfer by dividing the data into the number of replicas. The combination phase combines the transferred datausing resources of spare nodes. Also, our method reduces the possibility of failure throughout the scaling period and improves the availability of the database cluster.

Channel-Adaptive Beamforming Method for OFDMA Systems in frequency-Selective Channels (주파수 선택적 채널에서 OFDMA 시스템을 위한 적응 빔포밍 방법)

  • Han Seung Hee;Lee Kyu In;Ahn Jae Young;Cho Yong Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.10C
    • /
    • pp.976-982
    • /
    • 2005
  • In this paper, a channel-adaptive beamforming method is proposed for OFDMA (Orthogonal Frequency Division Multilexing Access) systems with smart antenna, in which the size of a cluster is determined adaptively depending on the frequency selectivity of the channel. The proposed method consists of 4 steps: initial channel estimation, refinement of channel estimates, region-splitting, and computation of weight vector for each region. In the proposed method, the size of a cluster for resource unit is determined adaptively according to a region-splitting criterion. It is shown by simulation that the proposed method shows good performances in both frequency-flat and frequency-selective channels.

Scaling of Hadoop Cluster for Cost-Effective Processing of MapReduce Applications (비용 효율적 맵리듀스 처리를 위한 클러스터 규모 설정)

  • Ryu, Woo-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.1
    • /
    • pp.107-114
    • /
    • 2020
  • This paper studies a method for estimating the scale of a Hadoop cluster to process big data as a cost-effective manner. In the case of medical institutions, demands for cloud-based big data analysis are increasing as medical records can be stored outside the hospital. This paper first analyze the Amazon EMR framework, which is one of the popular cloud-based big data framework. Then, this paper presents a efficiency model for scaling the Hadoop cluster to execute a Mapreduce application more cost-effectively. This paper also analyzes the factors that influence the execution of the Mapreduce application by performing several experiments under various conditions. The cost efficiency of the analysis of the big data can be increased by setting the scale of cluster with the most efficient processing time compared to the operational cost.

Energy Efficient Cooperative LEACH Protocol for Wireless Sensor Networks

  • Asaduzzaman, Asaduzzaman;Kong, Hyung-Yun
    • Journal of Communications and Networks
    • /
    • v.12 no.4
    • /
    • pp.358-365
    • /
    • 2010
  • We develop a low complexity cooperative diversity protocol for low energy adaptive clustering hierarchy (LEACH) based wireless sensor networks. A cross layer approach is used to obtain spatial diversity in the physical layer. In this paper, a simple modification in clustering algorithm of the LEACH protocol is proposed to exploit virtual multiple-input multiple-output (MIMO) based user cooperation. In lieu of selecting a single cluster-head at network layer, we proposed M cluster-heads in each cluster to obtain a diversity order of M in long distance communication. Due to the broadcast nature of wireless transmission, cluster-heads are able to receive data from sensor nodes at the same time. This fact ensures the synchronization required to implement a virtual MIMO based space time block code (STBC) in cluster-head to sink node transmission. An analytical method to evaluate the energy consumption based on BER curve is presented. Analysis and simulation results show that proposed cooperative LEACH protocol can save a huge amount of energy over LEACH protocol with same data rate, bit error rate, delay and bandwidth requirements. Moreover, this proposal can achieve higher order diversity with improved spectral efficiency compared to other virtual MIMO based protocols.

Multi-Channel Time Division Scheduling for Beacon Frame Collision Avoidance in Cluster-tree Wireless Sensor Networks (클러스트-트리 무선센서네트워크에서 비콘 프레임 충돌 회피를 위한 멀티채널 시분할 스케줄링)

  • Kim, Dongwon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.3
    • /
    • pp.107-114
    • /
    • 2017
  • In beacon-enabled mode, beacon collision is a significant problem for the scalability of cluster-tree wireless sensor networks. In this paper, multi-channel time division scheduling (MCTS) is proposed to prevent beacon collisions and provide scalability. A coordinator broadcasts a beacon frame, including information on allocated channels and time-slots, and a new node determines its own channel and time-slot. The performance of the proposed method is evaluated by comparing the proposed approach with a typical ZigBee. MCTS prevents beacon collisions in cluster-tree wireless sensor networks. It enables large-scale wireless sensor networks based on a cluster tree to be scalable and effectively constructed.