• Title/Summary/Keyword: cluster differentiation

Search Result 154, Processing Time 0.031 seconds

Accelerated elimination of human cancer cells by a CD40 agonist antibody combined with a PD-1 antagonist in CD4-depleted mice

  • Soon‑Hyun Ahn;Joo Yeon Choi;Seong Dong Kim;Sung Joon Park;Hyojin Kim
    • Oncology Letters
    • /
    • v.18 no.6
    • /
    • pp.5889-5896
    • /
    • 2019
  • The elimination of residual microscopic cancer cells is important cancer treatment. The immunoediting theory describes the balance between the immune system and cancer cells. The current study investigated changes in the immune system during the elimination of cancer cells and evaluated the influence of cluster of differentiation (CD)4 or CD8 depletion. A human squamous cell cancer cell line (SNU1041) was injected in the lateral tongue of immunocompetent mice and the changes in the CD4, CD8, CD11b, CD19, CD40 and CD40 ligand (L) populations in the blood, lymph nodes and spleen were evaluated using flow cytometry, and changes in serum cytokine levels were evaluated using a magnetic bead panel. Cancer cell elimination was delayed by CD4 depletion but not by CD8 depletion. The CD8-depleted group indicated increased levels of CD40L, interferon-gamma, interleukin (IL)-10, IL-6, and tumor necrosis factor-α. It was concluded that CD4 served a crucial role in the elimination of human cancer cells. Furthermore, the efficacies of CD40 agonist and programmed cell death protein 1 (PD1) antagonist treatments were assessed in CD4-depleted mice. CD40 agonist treatment resulted in faster cancer cell elimination and increased cytokine excretion. In conclusion, CD4 or CD40L significantly influenced cancer elimination. CD40 agonist antibodies may be potent adjuvant agents that can be used in patients with reduced CD4 or CD40L expression

Single-Cell RNA Sequencing of Bone Marrow Mesenchymal Stem Cells from the Elderly People

  • Dezhou Zhu;Jie Gao;Chengxuan Tang;Zheng Xu;Tiansheng Sun
    • International Journal of Stem Cells
    • /
    • v.15 no.2
    • /
    • pp.173-182
    • /
    • 2022
  • Background and Objectives: Bone marrow mesenchymal stem cells (BMSCs) show considerable promise in regenerative medicine. Many studies demonstrated that BMSCs cultured in vitro were highly heterogeneous and composed of diverse cell subpopulations, which may be the basis of their multiple biological characteristics. However, the exact cell subpopulations that make up BMSCs are still unknown. Methods and Results: In this study, we used single-cell RNA sequencing (scRNA-Seq) to divide 6,514 BMSCs into three clusters. The number and corresponding proportion of cells in clusters 1 to 3 were 3,766 (57.81%), 1,720 (26.40%), and 1,028 (15.78%). The gene expression profile and function of the cells in the same cluster were similar. The vast majority of cells expressed the markers defining BMSCs by flow cytometry and gene expression analysis. Each cluster had at least 20 differentially expressed genes (DEGs). We conducted Gene Ontology enrichment analysis on the top 20 DEGs of each cluster and found that the three clusters had different functions, which were related to self-renewal, multilineage differentiation and cytokine secretion, respectively. In addition, the function of the top 20 DEGs of each cluster was checked by the National Center for Biotechnology Information gene database to further verify our hypothesis. Conclusions: This study indicated that scRNA-Seq can be used to divide BMSCs into different subpopulations, demonstrating the heterogeneity of BMSCs.

Genetic Differentiation between Up- and Downstream Populations of Tribolodon hakonensis (Pieces: Cyprinidae) (삼척오십천 상.하류에 분포하는 황어, Tribolodon hakonensis (잉어과) 집단의 유전적 분화)

  • Lee, Sihn-Ae;Lee, Wan-Ok;Suk, Ho-Young
    • Korean Journal of Environment and Ecology
    • /
    • v.26 no.4
    • /
    • pp.475-483
    • /
    • 2012
  • Tribolodon hakonensis(Cypriniformes; Leuciscinae) is anadromous; they are born in freshwater, migrate back to the ocean, then return to their home stream for spawning from mid-March to early-June. Here, five microsatellites were used to assess the level of gene flow among T. hakonensis populations from the Samcheok-Oship Stream, South Korea. The frequencies of dominant alleles across several loci differed between down-and upstream populations divided by several weirs, and pairwise multilocus $F_{ST}$ estimate was significantly high(0.083). However, there were no signs of any loss of genetic variation in the upstream population. Assignment tests of individuals in admixture model(K=2) to a set of baseline samples showed fairly correct assignment to each cluster; all of upstream individuals sere included in the first cluster, while the majority of downstream individuals(65%) comprise the second cluster. These results indicate reduced gene flow between up- and downstream populations but allowing passive downstream drift. It is likely that man-made structures might at least partially be a factor for creating and consolidating the current distribution patterns of genetic variation among T. hakonensis populations in the Samcheok-Oship Stream. This information will assist governing agencies in making informed decisions regarding conservation of anadromous fishes in Korean drainage systems.

Genomic Differentiation Among Oyster Mushroom Cultivars Released in Korea by URP-PCR Fingerprinting

  • Kang, Hee-Wan;Park, Dong-Suk;Park, Young-Jin;You, Chang-Hyun;Lee, Byoung-Moo;Eun, Moo-Yong;Go, Seong-Joo
    • Mycobiology
    • /
    • v.29 no.2
    • /
    • pp.85-89
    • /
    • 2001
  • URP primers of 20 mer derived from repetitive sequence of rice were used to assess genetic variation of oyster mushroom consisting of 10 cultivars of Pleurotus ostreatus, two cultivars of P. florida and two cultivars of P. sajor-caju which were registered in Korea. URP2F and URP38F primers produced cultivar-specific PCR polymorphic bands in the Pleurotus species. UPGMA cluster analysis using the URP-PCR data showed that 14 Pleurotus cultivars are genetically clustered into large three groups. The URP-PCR data provided important information for more efficient breeding strategies of Pleurotus cultivars.

  • PDF

Genetic Differentiation of Strains of Xanthomonas campestris pv. vesicatoria by Random Amplified Polymorphic DNA (RAPD) (Random Amplified Polymorphic DNA (RAPD)를 이용한 고추 더뎅이병균 균주의 유전적 분류)

  • 정희정;김가영;고영진;노일섭;황병국
    • Korean Journal Plant Pathology
    • /
    • v.13 no.1
    • /
    • pp.5-12
    • /
    • 1997
  • Genetic diversity of forty-four strains of Xanthomonas campestris pv. vesicatoria from diverse geographic origins was investigated using random amplified polymorphic DNA (RAPD) of genomic DNA. One hundred and thirty-seven amplified fragments were produced by polymerase chain reaction with a set of 14 random primers, and the sizes of amplified DNA fragments ranged approximately from 0.3 to 3.2 kb. Cluster analysis of genetic similarity among the strains generated the dendrogram that clearly separated all strains from each other. The 44 strains of X. campestris pv. vesicatoria were classified into 4 major genomic DNA RAPD groups and 15 subgroups at the genetic similarity of 0.60 and 0.92, respectively. The strains from foreign countries formed discrete subgroups, but the United States strain 87-77 clustered closely with some of Korean strains together. Thirty-nine Korean strains were classified into 11 subgroups, and especially Masan strain Ms93-1 clustered distinctly far from the other Korean strains. RAPD polymorphism suggests strongly the occurrence of genetic differentiation of X. campestris pv. vesicatoria and the existence of genetically distinctive subgroups among the populations in Korea.

  • PDF

Genetic Diversity and Differentiation of Colletotrichum spp. Isolates Associated with Leguminosae Using Multigene Loci, RAPD and ISSR

  • Mahmodi, Farshid;Kadir, J.B.;Puteh, A.;Pourdad, S.S.;Nasehi, A.;Soleimani, N.
    • The Plant Pathology Journal
    • /
    • v.30 no.1
    • /
    • pp.10-24
    • /
    • 2014
  • Genetic diversity and differentiation of 50 Colletotrichum spp. isolates from legume crops studied through multigene loci, RAPD and ISSR analysis. DNA sequence comparisons by six genes (ITS, ACT, Tub2, CHS-1, GAPDH, and HIS3) verified species identity of C. truncatum, C. dematium and C. gloeosporiodes and identity C. capsici as a synonym of C. truncatum. Based on the matrix distance analysis of multigene sequences, the Colletotrichum species showed diverse degrees of intera and interspecific divergence (0.0 to 1.4%) and (15.5-19.9), respectively. A multilocus molecular phylogenetic analysis clustered Colletotrichum spp. isolates into 3 well-defined clades, representing three distinct species; C. truncatum, C. dematium and C. gloeosporioides. The ISSR and RAPD and cluster analysis exhibited a high degree of variability among different isolates and permitted the grouping of isolates of Colletotrichum spp. into three distinct clusters. Distinct populations of Colletotrichum spp. isolates were genetically in accordance with host specificity and inconsistent with geographical origins. The large population of C. truncatum showed greater amounts of genetic diversity than smaller populations of C. dematium and C. gloeosporioides species. Results of ISSR and RAPD markers were congruent, but the effective maker ratio and the number of private alleles were greater in ISSR markers.

Genetic Variation in the Selected Populations of Hovenia dulcis var. koreana Nakai. Based on RAPD Analysis

  • Kim Sea-Hyun;Han Jin-Gyu;Chung Hun-Gwan;Cho Yoon-Jin;Park Hyung-Soon
    • Plant Resources
    • /
    • v.8 no.3
    • /
    • pp.293-299
    • /
    • 2005
  • This study used RAPD markers to assume genetic diversity and variation in selected populations of Hovenia dulcis var. koreana. Ratio of polymorphic RAPD markers were 93.4% in selected populations of Hovenia dulcis Thunb., difference of genetic structure among populations and within populations showed 16.45%, 83.55%, respectively in amount of total genetic variation of 4 populations. Total gene diversity($H_T$) that show genetic diversity appeared 0.313 and coefficient of gene differentiation($G_{ST}$) that compare genetic differentiation of populations appeared 0.1645, analysis of AMOVA for variation among populations and within populations was significantly different (P<0.001). Genetic diversity of whole populations showed that 12.44% difference among population and 87.56% difference within populations. As a result, difference within populations was larger than difference among populations in genetic diversity. Nei's genetic distance and cluster analysis appeared that mean genetic distance among populations was 0.076, thus dividing two main groups and geographic relationship did not show in populations.

  • PDF

Genetic Variation of Abies holophylla Populations in South Korea Based on ISSR Markers (ISSR 분석에 의한 전나무 집단의 유전변이)

  • Kim, Young-Mi;Hong, Kyung Nak;Lee, Jei Wan;Yang, Byeong-Hoon
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.2
    • /
    • pp.182-188
    • /
    • 2014
  • Genetic diversity and genetic differentiation in six natural populations of Abies holophylla Max were investigated using ISSR marker system. From 6 ISSR primers, the average percentage of polymorphic loci was 85.6%, and the average expected heterozygosity ($H_e$) was 0.288. From the result of AMOVA, 94.4% of total genetic variation came from the differences among individuals within populations, and 5.6% was caused by those of among-populations. On the basis of Bayesian inference, genetic differentiation (${\theta}^{II}$ and $G_{ST}$) and inbreeding coefficient for all populations were 0.045, 0.038, and 0.509, respectively. The correlation between genetic distance and geographical distance was highly significant at the Mental's test (r = 0.74, P < 0.05). Six populations divided into two groups according to the results of UPGMA and PCA. One group included Namwon, Cheongdo and Mungyeong population. The other was Inje, Hongcheon and Pyeongchang population. Also, in Bayesian clustering analysis, 6 populations were divided into two clusters. But Cheongdo population was assigned into the other cluster unlike those of UPGMA or PCA. Taking the regions based on the results of the cluster analysis into consideration of AMOVA, 3.9% of genetic variation came from the regional difference. The dendrogram from UPGMA could provide the most genetically reasonable explanation for the distribution of Abies holophylla populations in South Korea.

Population Genetic Structure of the Korean Endemic Species, Iksookimia pacifica (Pisces: Cobitidae) Distributed in Northeast Korea (한국고유종 북방종개(어류강, 미꾸리과)의 집단유전학적 구조)

  • Jang, Sook-Jin;Ko, Myeong-Hun;Kwan, Ye-seul;Won, Yong-Jin
    • Korean Journal of Environment and Ecology
    • /
    • v.31 no.5
    • /
    • pp.461-471
    • /
    • 2017
  • Population genetic studies of 10 groups of Iksookimia pacifica were conducted to investigate the genetic diversity and population genetic structure across its known range in South Korea. Population DNA sequences of one mitochondrial gene (mtCOI) and three nuclear genes (IRBP, EGR2B, RAG1) were examined in samples collected from ten streams that flow into the East Sea. Both mitochondrial and nuclear sequences exhibited significant differentiation among populations except a few cases. The Bayesian analysis of the multi-locus genotypes inferred from the DNA sequences of nuclear genes clustered the individual fish largely into two geographical groups: a northern group (from Baebong stream to Cheonjin stream) and a southern group (Yangyangnamdae stream to Gangneungnamdae stream). Given that the streams flowing into the East Sea are geographically isolated water systems, such separation of genotypes can be interpreted by the geographical separation of common ancestors into north and south that had colonized South Korea. Since the initial geographical separation of the ancestral population by north and south, the ancestral groups seem to have experienced further differentiation into the current genetic clusters through the physical isolation of streams by the East Sea in each region. It is notable that many individuals in the Jasan stream formed a genetic cluster with those of Yangyangnamdae and Gangneungnamdae streams which are distant from each other. In addition, mitochondrial gene showed low genetic differentiation between some neighboring populations and very low level of genetic diversity in several populations. The present population genetic study will provide valuable information for the conservation and management of the Korean endemic fish species, I. paicifica.

Seafood Market Segmentation of Shanghai Consumer in China (중국 상하이 소비자의 수산물 시장 세분화)

  • Jang, Young-Soo;Park, Gi-Seup
    • The Journal of Fisheries Business Administration
    • /
    • v.45 no.3
    • /
    • pp.85-98
    • /
    • 2014
  • This study aimed to segment Chinese fisheries consumer market by means of cluster analysis based on Shanghai region consumers. The survey is conducted to 350 shanghai people on March 17-21 in 2014 and investigate demographic characteristics and consumer's behaviors unique to each segmented market by preference, labelling, quality, price, safety. The result of cluster analysis identified four market segments such as Catering type market, Worth pursuing type market, Substance pursuing type market, Trend pursuing type market. Catering type market is a passive fisheries consumption market and is not high attractive for Korea fisheries export market. Value pursuing type market consider importance to labelling, origin, brand and require high-quality and differentiation strategies. This market's main target species are high price fisheries such as tuna, salmon, crocker. Substance pursuing type market consider fisheries's safety and quality and purchases more popular fisheries such as crocker, hairtail, promfret, mackerel, squid. Trend pursuing type market's consumers prefer to purchase brands and trendy seafood rather than taste.