• Title/Summary/Keyword: clouds-ISM

Search Result 71, Processing Time 0.022 seconds

TEMPORAL VARIATION OF HCO+ 1-0 GALACTIC ABSORPTION LINES TOWARD NRAO 150 AND BL LAC

  • Han, Junghwan;Yun, Youngjoo;Park, Yong-Sun
    • Journal of The Korean Astronomical Society
    • /
    • v.50 no.6
    • /
    • pp.185-190
    • /
    • 2017
  • We present observations of $HCO^+$ 1-0 absorption lines toward two extragalactic compact radio sources, NRAO 150 and BL Lac with the Korean VLBI Network in order to investigate their time variation over 20 years by Galactic foreground clouds. It is found that the line shape of $-17kms^{-1}$ component changed marginally during 1993-1998 period and has remained unaltered thereafter for NRAO 150. Its behavior is different from that of $H_2CO$ $1_{10}-1_{11}$, suggesting chemical differentiation on ~ 20 AU scale, the smallest ever seen. On the other hand, BL Lac exhibits little temporal variation for the $HCO^+$ and $H_2CO$ lines. Our observation also suggests that Korea VLBI Network performs reliably in the spectrum mode in that the shapes of the new $HCO^+$ 1-0 spectra are in good agreement with the previous ones to an accuracy of a few percent except the time varying component toward NRAO 150.

ORFEUS SURVEYS OF THE INTERSTELLAR MOLECULAR HYDROGEN (ORFEUS 위성을 이용한 성간 수소분자의 전천 관측)

  • Lee, Dae-Hee;Seon, Kwang-Il;Min, Kyoung-Wook
    • Publications of The Korean Astronomical Society
    • /
    • v.20 no.1 s.24
    • /
    • pp.11-20
    • /
    • 2005
  • We present measurements of interstellar $H_2$ absorption lines in the continuum spectra of 54 early-type stars in the Galactic disk and halo and 3 stars in the Magellanic Clouds. The data were obtained with the Berkeley Extreme and Far-Ultraviolet Spectrometer (BEFS), part of the ORFEUS telescope, which flew on the ORFEUS-SPAS I and II space-shuttle missions in 1993 and 1996, respectively. The spectra extend from the interstellar cutoff at $912{\AA}$ to about $1200{\AA}$ with a spectral resolution of ${\sim}3000$ and statistical signal-to-noise ratios between 10 and 65. Assuming a velocity profile derived from optical observations (when available), we model the column densities N(J) of the rotational levels J = 0 through 5 for each line of sight. Our data reproduce the relationships among molecular and total hydrogen column density, fractional molecular abundance, and reddening first seen in Copernicusobservations of nearby stars (Savage et al. 1977). The results show that most of these molecular clouds have $H_2$ total column densities between $10^{15}cm^{-2}$ and $10^{21}cm^{-2}$, and kinetic temperatures from 21 K to 232 K, with average of 89 K, consistent with the result of Copernicus (Savage et al. 1977).

VLA AMMONIA LINE OBSERVATIONS OF THE YOUNG STELLAR OBJECT IRAS 19550+3248

  • LEE Ho-GYU;KOO BON-CHUL;PARK YONG-SUN;HO PAUL T. P.
    • Journal of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.105-110
    • /
    • 2002
  • We present the results of VLA $NH_3$ (1,1) and (2,2) line observations of the young-stellar object (YSO) IRAS 19550+3248. The integrated intensity map of the $NH_3$ (1,1) line shows that there are two ammonia cores in this region; core A which is associated with the YSO, and core B which is diffuse and located at the northeast of core A. Core A is compact and elongated along the east-west direction (0.07 pc$\times$0.05 pc) roughly perpendicular to the molecular outflow axis. Core B is diffuse and extended (0.18 pc$\times$0.07 pc). $NH_3$ (2,2) line is detected only toward core A, which indicates that it is hotter (~ 15 K), presumably due to the heating by the YSO. The $NH_3$ (1,1) line toward core A is wide (${\Delta}v{\ge} 3 km s^{-l}$) and appears to have an anomalous intensity ratio of the inner satellite hyperfine lines. The large line width may be attributed to the embedded YSO, but the hyperfine anomaly is difficult to explain. We compare the results of $NH_3$ observations with those of previous CS observations and find that the CS emission is detected only toward core A and is much more extended than the $NH_3$ emission.

Probing the Conditions for the Atomic-to-Molecular Transition in the Interstellar Medium

  • Park, Gyueun;Lee, Min-Young
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.50.2-51
    • /
    • 2021
  • Stars form exclusively in cold and dense molecular clouds. To fully understand star formation processes, it is hence a key to investigate how molecular clouds form out of the surrounding diffuse atomic gas. With an aim of shedding light in the process of the atomic-to-molecular transition in the interstellar medium, we analyze Arecibo HI emission and absorption spectral pairs along with TRAO/PMO 12CO(1-0) emission spectra toward 58 lines of sight probing in and around molecular clouds in the solar neighborhood, i.e., Perseus, Taurus, and California. 12CO(1-0) is detected from 19 out of 58 lines of sight, and we report the physical properties of HI (e.g., central velocity, spin temperature, and column density) in the vicinity of CO. Our preliminary results show that the velocity difference between the cold HI (Cold Neutral Medium or CNM) and CO (median ~ 0.7 km/s) is on average more than a factor of two smaller than the velocity difference between the warm HI (Warm Neutral Medium or WNM) and CO (median ~ 1.7 km/s). In addition, we find that the CNM tends to become colder (median spin temperature ~ 43 K) and abundant (median CNM fraction ~ 0.55) as it gets closer to CO. These results hints at the evolution of the CNM in the vicinity of CO, implying a close association between the CNM and molecular gas. Finally, in order to examine the role of HI in the formation of molecular gas, we compare the observed CNM properties to the theoretical model by Bialy & Sternberg (2016), where the HI column density for the HI-to-H2 transition point is predicted as a function of density, metallicity, and UV radiation field. Our comparison shows that while the model reproduces the observations reasonably well on average, the observed CNM components with high column densities are much denser than the model prediction. Several sources of this discrepancy, e.g., missing physical and chemical ingredients in the model such as the multi-phase ISM, non-equilibrium chemistry, and turbulence, will be discussed.

  • PDF

TURBULENCE STATISTICS FROM SPECTRAL LINE OBSERVATIONS

  • LAZARIAN A.
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.563-570
    • /
    • 2004
  • Turbulence is a crucial component of dynamics of astrophysical fluids dynamics, including those of ISM, clusters of galaxies and circumstellar regions. Doppler shifted spectral lines provide a unique source of information on turbulent velocities. We discuss Velocity-Channel Analysis (VCA) and its offspring Velocity Coordinate Spectrum (VCS) that are based on the analytical description of the spectral line statistics. Those techniques are well suited for studies of supersonic turbulence. We stress that a great advantage of VCS is that it does not necessary require good spatial resolution. Addressing the studies of mildly supersonic and subsonic turbulence we discuss the criterion that allows to determine whether Velocity Centroids are dominated by density or velocity. We briefly discuss ways of going beyond power spectra by using of higher order correlations as well as genus analysis. We outline the relation between Spectral Correlation Functions and the statistics available through VCA and VCS.

RECENT PROGRESS IN HIGH-MASS STAR-FORMATION STUDIES WITH ALMA

  • Hirota, Tomoya
    • Publications of The Korean Astronomical Society
    • /
    • v.33 no.2
    • /
    • pp.21-30
    • /
    • 2018
  • Formation processes of high-mass stars have been long-standing issues in astronomy and astrophysics. This is mainly because of major difficulties in observational studies such as a smaller number of high-mass young stellar objects (YSOs), larger distances, and more complex structures in young high-mass clusters compared with nearby low-mass isolated star-forming regions (SFRs), and extremely large opacity of interstellar dust except for centimeter to submillimeter wavelengths. High resolution and high sensitivity observations with Atacama Large Millimeter/Submillimeter Array (ALMA) at millimeter/submillimeter wavelengths will overcome these observational difficulties even for statistical studies with increasing number of high-mass YSO samples. This review will summarize recent progresses in high-mass star-formation studies with ALMA such as clumps and filaments in giant molecular cloud complexes and infrared dark clouds (IRDCs), protostellar disks and outflows in dense cores, chemistry, masers, and accretion bursts in high-mass SFRs.

LOW-MASS STAR FORMATION: CURRENT STATUS AND FUTURE PROGRESS WITH ALMA

  • Tafalla, Mario
    • Publications of The Korean Astronomical Society
    • /
    • v.33 no.3
    • /
    • pp.45-57
    • /
    • 2018
  • Low-mass star-formation studies deal with the birth of individual solar-type stars as it occurs in nearby molecular clouds. While this isolated mode of star formation may not represent the most common form of stellar birth, its study often provides first evidence for the general ingredients of star formation, such as gravitational infall, disk formation, or outflow acceleration. Here I briefly review the current status and the main challenges in our understanding of low-mass star formation, with emphasis in the still mysterious pre-stellar phase. In addition to presenting by-now classical work, I also show how ALMA is starting to play a decisive role driving progress in this field.

FOLLOW-UP OBSERVATIONS TOWARD PLANCK COLD CLUMPS WITH GROUND-BASED RADIO TELESCOPES

  • LIU, TIE;WU, YUEFANG;MARDONES, DIEGO;KIM, KEE-TAE;MENTEN, KARL M.;TATEMATSU, KEN;CUNNINGHAM, MARIA;JUVELA, MIKA;ZHANG, QIZHOU;GOLDSMITH, PAUL F;LIU, SHENG-YUAN;ZHANG, HUA-WEI;MENG, FANYI;LI, DI;LO, NADIA;GUAN, XIN;YUAN, JINGHUA;BELLOCHE, ARNAUD;HENKEL, CHRISTIAN;WYROWSKI, FRIEDRICH;GARAY, GUIDO;RISTORCELLI, ISABELLE;LEE, JEONG-EUN;WANG, KE;BRONFMAN, LEONARDO;TOTH, L. VIKTOR;SCHNEE, SCOTT;QIN, SHENGLI;AKHTER, SHAILA
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.79-82
    • /
    • 2015
  • The physical and chemical properties of prestellar cores, especially massive ones, are still far from being well understood due to the lack of a large sample. The low dust temperature (< 14 K) of Planck cold clumps makes them promising candidates for prestellar objects or for sources at the very initial stages of protostellar collapse. We have been conducting a series of observations toward Planck cold clumps (PCCs) with ground-based radio telescopes. In general, when compared with other star forming samples (e.g. infrared dark clouds), PCCs are more quiescent, suggesting that most of them may be in the earliest phase of star formation. However, some PCCs are associated with protostars and molecular outflows, indicating that not all PCCs are in a prestellar phase. We have identified hundreds of starless dense clumps from a mapping survey with the Purple Mountain Observatory (PMO) 13.7-m telescope. Follow-up observations suggest that these dense clumps are ideal targets to search for prestellar objects.

ASSOCIATION OF INFRARED DARK CLOUD CORES WITH YSOS: STARLESS OR STARRED IRDC CORES

  • Kim, Gwan-Jeong;Lee, Chang-Won;Kim, Jong-Soo;Lee, Youn-Gung;Ballesteros-Paredes, Javier;Myers, Philip C.;Kurtz, S.
    • Journal of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.9-23
    • /
    • 2010
  • In this paper we examined the association of Infrared Dark Cloud (IRDC) cores with YSOs and the geometric properties of the IRDC cores. For this study a total of 13,650 IRDC cores were collected mainly from the catalogs of the IRDC cores published from other studies and partially from our catalog of IRDC cores containing new 789 IRDC core candidates. The YSO candidates were searched for using the GLIMPSE, MSX, and IRAS point sources by the shape of their SED or using activity of water or methanol maser. The association of the IRDC cores with these YSOs was checked by their line-of-sight coincidence within the dimension of the IRDC core. This work found that a total of 4,110 IRDC cores have YSO candidates while 9,540 IRDC cores have no indication of the existence of YSOs. Considering the 12,200 IRDC cores within the GLIMPSE survey region for which the YSO candidates were determined with better sensitivity, we found that 4,098 IRDC cores (34%) have at least one YSO candidate and 1,072 cores among them seem to have embedded YSOs, while the rest 8,102 (66%) have no YSO candidate. Therefore, the ratio of [N(IRDC core with protostars)]/[N(IRDC core without YSO)] for 12,200 IRDC cores is about 0.13. Taking into account this ratio and typical lifetime of high-mass embedded YSOs, we suggest that the IRDC cores would spend about $10^4\sim10^5$ years to form high-mass stars. However, we should note that the GLIMPSE point sources have a minimum detectable luminosity of about $1.2 L_{\odot}$ at a typical IRDC core's distance of ~4 kpc. Therefore, the ratio given here should be a 100ver limit and the estimated lifetime of starless IRDC cores can be an upper limit. The physical parameters of the IRDC cores somewhat vary depending on how many YSO candidates the IRDC cores contain. The IRDC cores with more YSOs tend to be larger, more elongated, and have better darkness contrast than the IRDC cores with fewer or no YSOs.

Near-IR Polarization of the Northeastern Region of the Large Magellanic Cloud

  • Kim, Jaeyeong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.42.2-42.2
    • /
    • 2017
  • The Large Magellanic Cloud (LMC) is a unique target to study the detail structures of molecular clouds and star-forming regions, due to its proximity and face-on orientation from us. Most part of the astrophysical subjects for the LMC have been investigated, but the magnetic field is still veiling despite its role in the evolution of the interstellar medium (ISM) and in the main force to influence the star formation process. Measuring polarization of the background stars behind interstellar medium allows us to describe the existence of magnetic fields through the polarization vector map. In this presentation, I introduce the near-infrared polarimetric results for the $39^{\prime}{\times}69^{\prime}$ field of the northeastern region of the LMC and the N159/N160 star-forming complex therein. The polarimetric observations were conducted at IRSF/SIRPOL 1.4 m telescope. These results allow us to examine both the global geometry of the large-scale magnetic field in the northeastern region and the close structure of the magnetic field in the complex. Prominent patterns of polarization vectors mainly follow dust emission features in the mid-infrared bands, which imply that the large-scale magnetic fields are highly involved in the structure of the dust cloud in the LMC. In addition, local magnetic field structures in the N159/N160 star-forming complex are investigated with the comparison between polarization vectors and molecular cloud emissions, suggesting that the magnetic fields are resulted from the sequential formation history of this complex. I propose that ionizing radiation from massive stellar clusters and the expanding bubble of the ionized gas and dust in this complex probably affect the nascent magnetic field structure.

  • PDF