• Title/Summary/Keyword: cloud-storage

Search Result 428, Processing Time 0.022 seconds

Access-Authorizing and Privacy-Preserving Auditing with Group Dynamic for Shared Cloud Data

  • Shen, Wenting;Yu, Jia;Yang, Guangyang;Zhang, Yue;Fu, Zhangjie;Hao, Rong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.3319-3338
    • /
    • 2016
  • Cloud storage is becoming more and more popular because of its elasticity and pay-as-you-go storage service manner. In some cloud storage scenarios, the data that are stored in the cloud may be shared by a group of users. To verify the integrity of cloud data in this kind of applications, many auditing schemes for shared cloud data have been proposed. However, all of these schemes do not consider the access authorization problem for users, which makes the revoked users still able to access the shared cloud data belonging to the group. In order to deal with this problem, we propose a novel public auditing scheme for shared cloud data in this paper. Different from previous work, in our scheme, the user in a group cannot any longer access the shared cloud data belonging to this group once this user is revoked. In addition, we propose a new random masking technique to make our scheme preserve both data privacy and identity privacy. Furthermore, our scheme supports to enroll a new user in a group and revoke an old user from a group. We analyze the security of the proposed scheme and justify its performance by concrete implementations.

DNA Based Cloud Storage Security Framework Using Fuzzy Decision Making Technique

  • Majumdar, Abhishek;Biswas, Arpita;Baishnab, Krishna Lal;Sood, Sandeep K.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.7
    • /
    • pp.3794-3820
    • /
    • 2019
  • In recent years, a cloud environment with the ability to detect illegal behaviours along with a secured data storage capability is much needed. This study presents a cloud storage framework, wherein a 128-bit encryption key has been generated by combining deoxyribonucleic acid (DNA) cryptography and the Hill Cipher algorithm to make the framework unbreakable and ensure a better and secured distributed cloud storage environment. Moreover, the study proposes a DNA-based encryption technique, followed by a 256-bit secure socket layer (SSL) to secure data storage. The 256-bit SSL provides secured connections during data transmission. The data herein are classified based on different qualitative security parameters obtained using a specialized fuzzy-based classification technique. The model also has an additional advantage of being able to decide on selecting suitable storage servers from an existing pool of storage servers. A fuzzy-based technique for order of preference by similarity to ideal solution (TOPSIS) multi-criteria decision-making (MCDM) model has been employed for this, which can decide on the set of suitable storage servers on which the data must be stored and results in a reduction in execution time by keeping up the level of security to an improved grade.

Improving efficiency of remote data audit for cloud storage

  • Fan, Kuan;Liu, Mingxi;Shi, Wenbo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.2198-2222
    • /
    • 2019
  • The cloud storage service becomes a rising trend based on the cloud computing, which promotes the remote data integrity auditing a hot topic. Some research can audit the integrity and correctness of user data and solve the problem of user privacy leakage. However, these schemes cannot use fewer data blocks to achieve better auditing results. In this paper, we figure out that the random sampling used in most auditing schemes is not well apply to the problem of cloud service provider (CSP) deleting the data that users rarely use, and we adopt the probability proportionate to size sampling (PPS) to handle such situation. A new scheme named improving audit efficiency of remote data for cloud storage is designed. The proposed scheme supports the public auditing with fewer data blocks and constrains the server's malicious behavior to extend the auditing cycle. Compared with the relevant schemes, the experimental results show that the proposed scheme is more effective.

Adaptively Secure Anonymous Identity-based Broadcast Encryption for Data Access Control in Cloud Storage Service

  • Chen, Liqing;Li, Jiguo;Zhang, Yichen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1523-1545
    • /
    • 2019
  • Cloud computing is now a widespread and economical option when data owners need to outsource or share their data. Designing secure and efficient data access control mechanism is one of the most challenging issues in cloud storage service. Anonymous broadcast encryption is a promising solution for its advantages in the respects of computation cost and communication overload. We bring forward an efficient anonymous identity-based broadcast encryption construction combined its application to the data access control mechanism in cloud storage service. The lengths for public parameters, user private key and ciphertext in the proposed scheme are all constant. Compared with the existing schemes, in terms of encrypting and decrypting computation cost, the construction of our scheme is more efficient. Furthermore, the proposed scheme is proved to achieve adaptive security against chosen-ciphertext attack adversaries in the standard model. Therefore, the proposed scheme is feasible for the system of data access control in cloud storage service.

A Study on Individual User's Preference for Cloud Storage Service (클라우드 스토리지 서비스에 대한 개인 사용자의 선호 요인 연구)

  • Lee, Sewon;Hong, Ahreum;Hwang, Junseok
    • Journal of Technology Innovation
    • /
    • v.23 no.1
    • /
    • pp.1-36
    • /
    • 2015
  • The purpose of this research is to find individual user's preference for cloud storage service such as Daum Cloud, Naver N-Drive, GoogleDrive, Dropbox, SkyDrive and iCloud. Through literature reviewed and pilot tests, 6 attributes of cloud storage service (storage capacity, perceived cost, collaboration, accessibility, social influence and perceived security) were selected and all 6 attributes had significant effects on the preference of cloud storage service by conjoint analysis. The results shows that the user's willingness to pay is estimated 10,553 won for the free storage, 4,646 won for the function for mobile accessibility, and 2,443 won for more reliable cloud computing service provider. This study has significance to apply conjoint analysis with economic, technological, and environmental factors to cloud storage service (SaaS) and shed light on policy promotion of next generation of cloud computing ecosystem by user perception with willingness to pay on the storage service.

An Efficient and Secure Data Storage Scheme using ECC in Cloud Computing (클라우드 컴퓨팅에서 ECC 암호를 적용한 안전한 데이터 스토리지 스킴)

  • Yin, XiaoChun;Thiranant, Non;Lee, HoonJae
    • Journal of Internet Computing and Services
    • /
    • v.15 no.2
    • /
    • pp.49-58
    • /
    • 2014
  • With the fast development of internet, cloud computing has become the most demanded technology used all over the world. Cloud computing facilitates its consumers by providing virtual resources via internet. One of the prominent services offered in cloud computing is cloud storage. The rapid growth of cloud computing also increases severe security concerns to cloud storage. In this paper, we propose a scheme which allows users not only securely store and access data in the cloud, but also share data with multiple users in a secured way via unsecured internet. We use ECC for cryptography and authentication operation which makes the scheme work in a more efficient way.

Design and Implementation of Software-Defined Storage Autoconfiguration Module for Integrated Use of Cloud File/Block/Object Storage (클라우드 파일/블록/객체 스토리지의 통합사용을 위한 소프트웨어 정의 스토리지 자동 설정 모듈의 설계 및 구현)

  • Park, Sun;Cha, ByungRae;Kim, Jongwon
    • Smart Media Journal
    • /
    • v.7 no.4
    • /
    • pp.9-16
    • /
    • 2018
  • In order to improve the economics and flexibility of cloud computing, tendency to automate the operation and management of cloud resources has become complicated. However, while automation for cloud storage depends on the manufacturer's storage hardware, it cannot flexibly support the storage type in accordance with users' needs. In this paper, we propose an automatic configuration module that supports block/file/object storages suitable for user environment. In order to automatically install ceph, a cloud storage, we propose an automatic installation and configuration module based on the Chef configuration management tool. In addition to that, we also propose an automatic configuration module based on a shell programming in pursuit of enabling users to use ceph storage of block/file/object. The proposed method can automatically set up and manage shared file, block, and object storages in a virtual or physical user environment with no hardware dependencies.

In-Memory File System Backed by Cloud Storage Services as Permanent Storages (클라우드 스토리지를 최종 저장 장치로 사용하는 인메모리 파일 시스템)

  • Lee, Kyungjun;Kim, Jiwon;Ryu, Sungtae;Han, Hwansoo
    • Journal of KIISE
    • /
    • v.43 no.8
    • /
    • pp.841-847
    • /
    • 2016
  • As network technology advances, a larger number of devices are connected through the Internet. Recently, cloud storage services are gaining popularity, as they are convenient to access anytime and anywhere. Among cloud storage services, object storage is the representative one due to their characteristics of low cost, high availability, and high durability. One limitation of object storage services is that they can access data on the cloud only through the HTTP-based RESTful APIs. In our work, we resolve this limitation with the in-memory file system which provides a POSIX interface to the file system users and communicates with cloud object storages with RESTful APIs. In particular, our flush mechanism is compatible with existing file systems, as it is based on the swap mechanism of the Linux kernel. Our in-memory file system backed by cloud storage reduces the performance overheads and shows a better performance than S3QL by 57% in write operations. It also shows a comparable performance to tmpfs in read operations.

Hybrid in-memory storage for cloud infrastructure

  • Kim, Dae Won;Kim, Sun Wook;Oh, Soo Cheol
    • Journal of Internet Computing and Services
    • /
    • v.22 no.5
    • /
    • pp.57-67
    • /
    • 2021
  • Modern cloud computing is rapidly changing from traditional hypervisor-based virtual machines to container-based cloud-native environments. Due to limitations in I/O performance required for both virtual machines and containers, the use of high-speed storage (SSD, NVMe, etc.) is increasing, and in-memory computing using main memory is also emerging. Running a virtual environment on main memory gives better performance compared to other storage arrays. However, RAM used as main memory is expensive and due to its volatile characteristics, data is lost when the system goes down. Therefore, additional work is required to run the virtual environment in main memory. In this paper, we propose a hybrid in-memory storage that combines a block storage such as a high-speed SSD with main memory to safely operate virtual machines and containers on main memory. In addition, the proposed storage showed 6 times faster write speed and 42 times faster read operation compared to regular disks for virtual machines, and showed the average 12% improvement of container's performance tests.

A Study on Selection Factors of Personal Cloud Storage Service Using AHP (AHP를 활용한 개인 클라우드 스토리지 서비스 선택 요인에 관한 연구)

  • Jo, Hyeon;Cho, Hyegyeong;Kim, Younghee;Kim, Hayan;Jeon, Hyeon-Jeong;Lee, Jae Kwang
    • Journal of Information Technology Services
    • /
    • v.14 no.3
    • /
    • pp.197-215
    • /
    • 2015
  • Recently, many internet users are using cloud computing. Users can manage, store and share their data and information by using personal cloud storage. In this paper, we aim to figure out influencing factors on personal cloud storage selection. The causal relationship between factors were identified through a importance analysis by using AHP(Analytic Hierarchy Process). AHP is a structured technique for organizing and analyzing complex decisions, based on mathematics and psychology. Research model consists of upper factorsincluding system factor, service factor and user factor. 12 lower factors and 6 alternatives were also analyzed. Asa result, system factor of 3 upper factors was found as the most important factor. Purpose-coincidence, security andaccessibility were top 3 factors among lower factors. N drive showed top importance value. We also conducted ANOVAby classifying 4 groups according to gender, age, currently used cloud and cloud to use. The results of this researchcan be useful guidelines for cloud computing industry.