• Title/Summary/Keyword: cloud-based virtual networks

Search Result 26, Processing Time 0.026 seconds

SDN-Based Enterprise and Campus Networks: A Case of VLAN Management

  • Nguyen, Van-Giang;Kim, Young-Han
    • Journal of Information Processing Systems
    • /
    • v.12 no.3
    • /
    • pp.511-524
    • /
    • 2016
  • The Virtual Local Area Network (VLAN) has been used for a long time in campus and enterprise networks as the most popular network virtualization solution. Due to the benefits and advantages achieved by using VLAN, network operators and administrators have been using it for constructing their networks up until now and have even extended it to manage the networking in a cloud computing system. However, their configuration is a complex, tedious, time-consuming, and error-prone process. Since Software Defined Networking (SDN) features the centralized network management and network programmability, it is a promising solution for handling the aforementioned challenges in VLAN management. In this paper, we first introduce a new architecture for campus and enterprise networks by leveraging SDN and OpenFlow. Next, we have designed and implemented an application for easily managing and flexibly troubleshooting the VLANs in this architecture. This application supports both static VLAN and dynamic VLAN configurations. In addition, we discuss the hybrid-mode operation where the packet processing is involved by both the OpenFlow control plane and the traditional control plane. By deploying a real test-bed prototype, we illustrate how our system works and then evaluate the network latency in dynamic VLAN operation.

Enabling Performance Intelligence for Application Adaptation in the Future Internet

  • Calyam, Prasad;Sridharan, Munkundan;Xu, Yingxiao;Zhu, Kunpeng;Berryman, Alex;Patali, Rohit;Venkataraman, Aishwarya
    • Journal of Communications and Networks
    • /
    • v.13 no.6
    • /
    • pp.591-601
    • /
    • 2011
  • Today's Internet which provides communication channels with best-effort end-to-end performance is rapidly evolving into an autonomic global computing platform. Achieving autonomicity in the Future Internet will require a performance architecture that (a) allows users to request and own 'slices' of geographically-distributed host and network resources, (b) measures and monitors end-to-end host and network status, (c) enables analysis of the measurements within expert systems, and (d) provides performance intelligence in a timely manner for application adaptations to improve performance and scalability. We describe the requirements and design of one such "Future Internet performance architecture" (FIPA), and present our reference implementation of FIPA called 'OnTimeMeasure.' OnTimeMeasure comprises of several measurement-related services that can interact with each other and with existing measurement frameworks to enable performance intelligence. We also explain our OnTimeMeasure deployment in the global environment for network innovations (GENI) infrastructure collaborative research initiative to build a sliceable Future Internet. Further, we present an applicationad-aptation case study in GENI that uses OnTimeMeasure-enabled performance intelligence in the context of dynamic resource allocation within thin-client based virtual desktop clouds. We show how a virtual desktop cloud provider in the Future Internet can use the performance intelligence to increase cloud scalability, while simultaneously delivering satisfactory user quality-of-experience.

Toward Mobile Cloud Computing-Cloudlet for implementing Mobile APP based android platform (안드로이드 기반의 모바일 APP 개발을 위한 모바일 클라우드 컴퓨팅)

  • Nkenyereye, Lionel;Jang, Jong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.6
    • /
    • pp.1449-1454
    • /
    • 2015
  • Virtualization lacks capabilities for enabling the application to scale efficiently because of new applications components which are raised to be configured on demand. In this paper, we propose an architecture that affords mobile app based on nomadic smartphone using not only mobile cloud computing-cloudlet architecture but also a dedicated platform that relies on using virtual private mobile networks to provide reliable connectivity through LTE(Long Term Evolution) wireless communication. The design architecture lies with how the cloudlet host discovers service and sends out the cloudlet IP and port while locating the user mobile device. We demonstrate the effectiveness of the proposed architecture by implementing an android application responsible of real time analysis by using a vehicle to applications smartphone interface approach that considers the smartphone to act as a remote users which passes driver inputs and delivers outputs from external applications.

HiMang: Highly Manageable Network and Service Architecture for New Generation

  • Choi, Tae-Sang;Lee, Tae-Ho;Kodirov, Nodir;Lee, Jae-Gi;Kim, Do-Yeon;Kang, Joon-Myung;Kim, Sung-Su;Strassner, John;Hong, James Won-Ki
    • Journal of Communications and Networks
    • /
    • v.13 no.6
    • /
    • pp.552-566
    • /
    • 2011
  • The Internet is a very successful modern technology and is considered to be one of the most important means of communication. Despite that success, fundamental architectural and business limitations exist in the Internet's design. Among these limitations, we focus on a specific issue, the lack of manageability, in this paper. Although it is generally understood that management is a significant and important part of network and service design, it has not been considered as an integral part in their design phase. We address this problem with our future Internet management architecture called highly manageable network and service architecture for new generation (HiMang), which is a novel architecture that aims at integrating management capabilities into network and service design. HiMang is highly manageable in the sense that it is autonomous, scalable, robust, and evolutionary while reducing the complexity of network management. Unlike any other management framework, HiMang provides management support for the revolutionary networks of the future while maintaining backward compatibility for existing networks.

Autoscaling Mechanism based on Execution-times for VNFM in NFV Platforms (NFV 플랫폼에서 VNFM의 실행 시간에 기반한 자동 자원 조정 메커니즘)

  • Mehmood, Asif;Diaz Rivera, Javier;Khan, Talha Ahmed;Song, Wang-Cheol
    • KNOM Review
    • /
    • v.22 no.1
    • /
    • pp.1-10
    • /
    • 2019
  • The process to determine the required number of resources depends on the factors being considered. Autoscaling is one such mechanism that uses a wide range of factors to decide and is a critical process in NFV. As the networks are being shifted onto the cloud after the invention of SDN, we require better resource managers in the future. To solve this problem, we propose a solution that allows the VNFMs to autoscale the system resources depending on the factors such as overhead of hyperthreading, number of requests, execution-times for the virtual network functions. It is a known fact that the hyperthreaded virtual-cores are not fully capable of performing like the physical cores. Also, as there are different types of core having different frequencies so the process to calculate the number of cores needs to be measured accurately and precisely. The platform independency is achieved by proposing another solution in the form of a monitoring microservice, which communicates through APIs. Hence, by the use of our autoscaling application and a monitoring microservice, we enhance the resource provisioning process to meet the criteria of future networks.

Designing Mutual Cooperation Security Model for IP Spoofing Attacks about Medical Cluster Basis Big Data Environment (의료클러스터 기반의 빅 데이터 환경에 대한 IP Spoofing 공격 발생시 상호협력 보안 모델 설계)

  • An, Chang Ho;Baek, Hyun Chul;Seo, Yeong Geon;Jeong, Won Chang;Park, Jae Heung
    • Convergence Security Journal
    • /
    • v.16 no.7
    • /
    • pp.21-29
    • /
    • 2016
  • Our society is currently exposed to environment of various information that is exchanged real time through networks. Especially regarding medical policy, the government rushes to practice remote medical treatment to improve the quality of medical services for citizens. The remote medical practice requires establishment of medical information based on big data for customized treatment regardless of where patients are. This study suggests establishment of regional medical cluster along with defense and protection cooperation models that in case service availability is harmed, and attacks occur, the attacks can be detected, and proper measures can be taken. For this, the study suggested forming networks with nationwide local government hospitals as regional virtual medical cluster bases by the same medical information system. The study also designed a mutual cooperation security model that can real time cope with IP Spoofing attack that can occur in the medical cluster and DDoS attacks accordingly, so that the limit that sole system and sole security policy have can be overcome.