• Title/Summary/Keyword: cloud theory

Search Result 102, Processing Time 0.028 seconds

Study on the Retrieval of Vertical Air Motion from the Surface-Based and Airborne Cloud Radar (구름레이더를 이용한 대기 공기의 연직속도 추정연구)

  • Jung, Eunsil
    • Atmosphere
    • /
    • v.29 no.1
    • /
    • pp.105-112
    • /
    • 2019
  • Measurements of vertical air motion and microphysics are essential for improving our understanding of convective clouds. In this paper, the author reviews the current research on the retrieval of vertical air motions using the cloud radar. At radar wavelengths of 3 mm (W-band radar; 94-GHz radar; cloud radar), the raindrop backscattering cross-section (${\sigma}b$) varies between successive maxima and minima as a function of the raindrop diameter (D) that are well described by Mie theory. The first Mie minimum in the backscattering cross-section occurs at D~1.68 mm, which translates to a raindrop terminal fall velocity of ${\sim}5.85m\;s^{-1}$ based on the Gunn and Kinzer relationship. Since raindrop diameters often exceed this size, the signal is captured in the radar Doppler spectrum, and thus, the location of the first Mie minimum can be used as a reference for retrieving the vertical air motion. The Mie technique is applied to radar Doppler spectra from the surface-based and airborne, upward pointing W-band radars. The contributions of aircraft motion to the vertical air motion are also described and further the first-order aircraft motion corrected equation is presented. The review also shows that the separate spectral peaks due to the cloud droplets can provide independent validation of the Mie technique retrieved vertical air motion using the cloud droplets as a tracer of vertical air motion.

A Study on Spontaneous Ignition of Hydroxy Propyl Methyl Cellulose (Hydroxy Propyl Methyl Cellulose의 자연발화에 관한 연구)

  • 최재욱;목연수;하동명
    • Fire Science and Engineering
    • /
    • v.15 no.4
    • /
    • pp.34-40
    • /
    • 2001
  • The spontaneous ignition of hydroxypropyl methyl cellulose(HPMC) was investigated at constant ambient temperature in the oven and minimum ignition temperature of dust clouds with Godbret-Creenwald Furnace respectively, In the experiments of the vessel filled with sample. the larger the vessel was the lower the spontaneous ignition temperature and ambient temperature was calculated from the Frank-Kamenetskii thermal ignition theory. The minimum ignition temperature for the dust cloud state was found under 21% oxygen concentration. At the experiment with the change of oxygen concentration, HPMC was not ignite at 10% $O_2$and so the limiting oxygen concentration was obtained at 10%.

  • PDF

Calculations of Optical Properties of Cloud Particles to Improve the Accuracy of Forward Scattering Probes for In-Situ Aircraft Cloud Measurements (항공기 구름 관측에 사용되는 전방산란 관측 기기의 정확도 향상을 위한 구름입자의 광학적 특성 계산)

  • Um, Junshik
    • Atmosphere
    • /
    • v.30 no.1
    • /
    • pp.75-89
    • /
    • 2020
  • Current in-situ airborne probes that measure the sizes of ice crystals smaller than 50 ㎛ are based on the concept that the measured intensity of light scattered by a particle in the forward and/or backward direction can be converted to particle size. The relationship between particle size and scattered light used in forward scattering probes is based on Mie theory, which assumes the refractive index of particle is known and all particles are spherical. Not only are small crystals not spherical, but also there are a wide variety of non-spherical shapes. Although it is well known that the scattering properties of non-spherical ice crystals differ from those of spherical shapes, the impacts of non-sphericity on derived in-situ particle size distributions are unknown. Thus, precise relationships between the intensity of scattered light and particle size and shape are required, as based on accurate calculations of scattering properties of ice crystals. In this study, single-scattering properties of ice crystals smaller than 50 ㎛ are calculated at a wavelength of 0.55 ㎛ using a numerically exact method (i.e., discrete dipole approximation). For these calculations, hexagonal ice crystals with varying aspect ratios are used to represent the shapes of natural small ice crystals to determine the errors caused by non-spherical ice crystals measured by forward scattering probes. It is shown that the calculated errors in sizing nonspherical ice crystals are at least 13% and 26% in forward (4~12°) and backward (168~176°) directions, respectively, and maximum errors are up to 120% and 132%.

Evidential Fusion of Multsensor Multichannel Imagery

  • Lee Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.1
    • /
    • pp.75-85
    • /
    • 2006
  • This paper has dealt with a data fusion for the problem of land-cover classification using multisensor imagery. Dempster-Shafer evidence theory has been employed to combine the information extracted from the multiple data of same site. The Dempster-Shafer's approach has two important advantages for remote sensing application: one is that it enables to consider a compound class which consists of several land-cover types and the other is that the incompleteness of each sensor data due to cloud-cover can be modeled for the fusion process. The image classification based on the Dempster-Shafer theory usually assumes that each sensor is represented by a single channel. The evidential approach to image classification, which utilizes a mass function obtained under the assumption of class-independent beta distribution, has been discussed for the multiple sets of mutichannel data acquired from different sensors. The proposed method has applied to the KOMPSAT-1 EOC panchromatic imagery and LANDSAT ETM+ data, which were acquired over Yongin/Nuengpyung area of Korean peninsula. The experiment has shown that it is greatly effective on the applications in which it is hard to find homogeneous regions represented by a single land-cover type in training process.

MODEL CALCULATIONS OF THE UV - EXCITED MOLECULAR HYDROGEN IN INTERSTELLAR CLOUDS

  • Lee, Dae-Hee;Pak, Soo-Jong;Seon, Kwang-Il
    • Publications of The Korean Astronomical Society
    • /
    • v.20 no.1 s.24
    • /
    • pp.7-10
    • /
    • 2005
  • We have calculated 2448 interstellar cloud models to investigate the formation and destruction of high rotational level $H_2$ according to the combinations of five physical conditions: the input UV intensity, the $H_2$ column density, cloud temperature, total density, and the $H_2$ formation rate efficiency. The models include the populations of all the accessible states of $H_2$ with the rotational quantum number J < 16 as a function of depth through the model clouds, and assume that the abundance of $H_2$ is in a steady state governed primarily by the rate of formation on the grain surfaces and the rates of destruction by spontaneous fluorescent dissociation following absorption in the Lyman and Werner band systems. The high rotational levels J = 4 and J = 5 are both populated by direct formation into these levels of newly created molecules, and by pumping from J = 0 and J = 1, respectively The model results show that the high rotational level ratio N(4)/N(0) is proportional to the incident UV intensity, and is inversely proportional to the $H_2$ molecular fraction, as predicted in theory.

Applying the TOC Thinking Process: A Study for Stabilization of Integrated Railway Safety Audit System (TOC Thinking Process를 활용한 철도종합안전심사 안정화방안 연구)

  • Oh, In-Tack;Jang, Seong-Yong
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.990-1003
    • /
    • 2006
  • To cope with the change of railway safety environment and to prevent the catastrophic accident, the railway safety management system was established through the legislation of railway safety rules. And to audit and evaluate the accomplishment of railway safety rules by the railway operators, the Integrated Railway Safety Audit System(IRSAS) has been conducting. This study find out the strategy to stabilize the IRSAS by applying Theory of Constraints(TOC) Thinking Process. For meeting the IRSAS's goal of effective levelling up of railway safety, the two necessary conditions, 1)the secure of substantial safety through the IRSAS and 2)the execution of efficient IRSAS, should be fulfilled. Estimated undesirable effects(UDEs) from the IRSAS were identified, and 3 of them were selected for creating the requisite conflict clouds. Entities from these conflict clouds were synthesized into a core conflict cloud that foamed the base of Current Reality Tree. The strategic direction for change extracted from the conflict cloud is the reinforcement of IRSAS preparation system including the level up of operator's self audit, the deepening of preliminary survey, the establishment of complementing system of audit check list and the build up of auditor's specialization. These injection were logically validated via a Future Reality Tree and expected to be confirmed by further progressing of IRSAS.

  • PDF

Analysis on the Use Fluctuation of Amusementpark -The Case Study of Tong-Ch$\acute{o}$n Amusement Park- (유원지(遊園地)의 이용변동분석(利用變動分析) -동촌유원지(東村遊園地) 사례연구(事例硏究)-)

  • Kim, Young Soo;Lim, Won Hyeon
    • Current Research on Agriculture and Life Sciences
    • /
    • v.5
    • /
    • pp.134-142
    • /
    • 1987
  • The purpose of this study is to establish more rational and practical planning theory for amusementpark. It analyze and considerate the fluctuation of the people who come and use a Tong-Ch'on amusementpark. The results drawn from this research work are as follows ; There are considerable correlation between use fluctuation and some factors. The factors are season (spring, summer, autumn) as a time, temperature, cloud amount, duration of sunshine, weather (rainy day) as a climate and date (weekday, holiday) as a social system. The important variables are temperature, cloud amount, duration of sunshine and date (week day, holiday) to estimate the user of amusementpark. I can reduce the following two types of regression models. 1.${\log}_eY1=6.9114+0.1135TEM+0.00002_eSUM-0.4068WI+0.4316W3$ ($R^2=0.94$) 2. ${\log}_eY2=7.2069+0.1177TEM-0.0990CLO+0.488W3$ ($R^2=0.95$) Y ; Number of User TEM ; Temperature CLO ; Amount of cloud SUN ; Duration of Sunshine WI ; Weekday W3 ; Holiday Those model is inorder to estimate the user for management of Tong-Ch'on amusementpark and use on the computation of facility size for reconstruction. Besides the amusementpark, city park and outdoor recreation area could estimate of user throuth this method. But, I am not sure about the regression models because I didn't apply the regression models to the other amusementpark, city park or outdoor recreation area. Therefore, I think that this problem needs to study in the future.

  • PDF

Phase Equilibrium Study on the Ternary System of SBR/EPDM/Solvent (SBR, EPDM 및 Solvent로 이루어진 삼성분계의 상 평형에 관한 연구)

  • Go, Jin-Hwan;Park, Byung-Ho
    • Elastomers and Composites
    • /
    • v.37 no.4
    • /
    • pp.211-216
    • /
    • 2002
  • The polymer-polymer interaction parameter, x 23t, of the styrene-butadiene polymer (SBR) and ethylene-propylene-diene terpolymer (EPDM) was investigated by observing the phase behavior of the ternary system of SBR/EPDM/solvent. The solvent used in this study was benzene acting as a good solvent for SBR but as a poor solvent for EPDM. Ternary solutions with various concentrations and mixing ratios of the two component polymers were separated into two phases by temperature change The cloud point curves (CPC) showed that the differerence of solvent affinities toward each polymer and the repulsive interaction between two polymers considerably affect the shape of CPC near 15℃. In the temperature range of 5℃ ~ 25℃, incompatible behaviours arised from both the difference of mixing ratios and concentration were clearly observed. Also the phase separation temperature greatly influenced on the composition of each separated phase. The calculated x 23t values from Flory-Huggins theory were in the range of 0.6301 ~ 1.0775, which suggest that the SBR/EPDM systems are incompatible.

A Study on the Factors Affecting Use Behavior of Cloud-based Common Collaboration Platform (클라우드 기반 공통협업플랫폼의 사용행동에 영향을 미치는 요인에 관한 연구)

  • Kim, San-Hae;Lee, Hong-Jae;Han, Kyeong-Seok;Kwon, Tae-Hyun
    • Journal of Digital Contents Society
    • /
    • v.19 no.6
    • /
    • pp.1151-1160
    • /
    • 2018
  • The study has been derived through the empirical analysis so as to find the usage behavior of cloud-based common collaboration platform. Independent variables of the cloud-based platform have been selected as flexibility, reliability, versatility, security and interaction, which have been selected by utilizing UTAUT theory. After selecting the use intent as a parameter, usage behavior was been finally selected as a dependent variable. The firm type was used as a control variable. We used AMOS 23.0 and SPSS 23.0 statistical programs for the hypothesis test and distributed the questionnaires to users using the cloud-based common collaboration platform. Then, a total of 180 copies from distributed questionnaires were used for the analysis. The results showed that reliability, security and interaction had a positive effect on intention to use. On the other hand, flexibility and versatility did not affect intention to use positively. Finally, it was verified that the intention to use had a positive effect on the use behavior. At last, it showed that there is a moderation effect according to the type of company.

A New Optimized Localized Technique of CG Return Stroke Lightning Channel in Forest

  • Kabir, Homayun;Kanesan, Jeevan;Reza, Ahmed Wasif;Ramiah, Harikrishnan;Dimyati, Kaharudin
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2356-2363
    • /
    • 2015
  • Localization of lightning strike point (LSP) in the forest is modeled to mitigate the forest fire damage. Though forest fire ignited by lightning rarely happens, its damage on the forest is grievousness. Therefore, predicting accurate location of LSP becomes crucial in order to control the forest fire. In this paper, we proposed a new hybrid localization algorithm by combining the received signal strength (RSS) and the received signal strength ratio (RSSR) to improve the accuracy by mitigating the environmental effect of lightning strike location in the forest. The proposed hybrid algorithm employs antenna theory (AT) model of cloud-to-ground (CG) return stroke lightning channel to forecast the location of the lightning strike. The obtained results show that the proposed hybrid algorithm achieves better location accuracy compared to the existing RSS method for predicting the lightning strike location considering additive white Gaussian noise (AWGN) environment.