In this study, a complete 3D surface reconstruction method is proposed based on the concept that the vertices, of surface model can be completely matched to the unstructured point cloud. In order to generate the initial mesh model from the point cloud, the mesh subdivision of bounding box and shrink-wrapping algorithm are introduced. The control mesh model for well representing the topology of point cloud is derived from the initial mesh model by using the mesh simplification technique based on the original QEM algorithm, and the parametric surface model for approximately representing the geometry of point cloud is derived by applying the local subdivision surface fitting scheme on the control mesh model. And, to reconstruct the complete matching surface model, the insertion of isolated points on the parametric surface model and the mesh optimization are carried out. Especially, the fast 3D surface reconstruction is realized by introducing the voxel-based nearest-point search algorithm, and the simulation results reveal the availability of the proposed surface reconstruction method.
Polyethylene glycol 20, 000 and 6, 000 were found to have an upper consolute temperature, called "cloud point", and the effects of various additives on the polythylene glycols were investigated in this study. Electrolytes lowered the cloud point in proportion to their concentrations through dehydration and electrostriction. It was found that anions played a more important role than cations and the effects of both the cations and the anions clearly followed the classical Hofmeister series. However, the Schultze Hardy rule holds for the effect of anions, and fails for the effect of cations. Salts of large polarizable anions such as iodide and thiocynate rather raised the cloud point, and their effects were ascribed to the fact that they break the water structure and weaken hydrophobic bonding of the polyxyethylene moiety. Nitrates of polyvalent cations also raised the cloud point. This was ascribed to the complex formation between the polyvalent cations and ether oxygens of the polyoxyethylenes. This explained the failure 'of the Schultz-Hardy rule for cations. Uncharged aromatic compounds drastically lowered the clound point, while aliphatic alcohols slightly lowered the cloud point, This result suggests that there might be some interaction between ether oxygens and aromatic nucleus.c nucleus.
In this paper, we introduce the software/hardware system that can reliably calculate the distance from sensor to the model regardless of point cloud density. As the 3d point cloud map is widely adopted for SLAM and computer vision, the accuracy of point cloud map is of great importance. However, the 3D point cloud map obtained from Lidar may reveal different point cloud density depending on the choice of sensor, measurement distance and the object shape. Currently, when measuring map accuracy, high reflective bands are used to generate specific points in point cloud map where distances are measured manually. This manual process is time and labor consuming being highly affected by Lidar sparsity level. To overcome these problems, this paper presents a hardware design that leverage high intensity point from three planar surface. Furthermore, by calculating distance from sensor to the device, we verified that the automated method is much faster than the manual procedure and robust to sparsity by testing with RGB-D camera and Lidar. As will be shown, the system performance is not limited to indoor environment by progressing the experiment using Lidar sensor at outdoor environment.
KSII Transactions on Internet and Information Systems (TIIS)
/
제13권6호
/
pp.3108-3120
/
2019
Point cloud is widely used in 3D applications due to the recent advancement of 3D data acquisition technology. Polygonal mesh-based compression has been dominant since it can replace many points sharing a surface with a set of vertices with mesh structure. Recent point cloud-based applications demand more point-based interactivity, which makes point cloud compression (PCC) becomes more attractive than 3D mesh compression. Interestingly, an exploration activity has been started to explore the feasibility of PCC standard in MPEG. In this paper, a new color attribute compression method is presented for point cloud data. The proposed method utilizes the spatial redundancy among color attribute data to construct a color palette. The color palette is constructed by using K-means clustering method and each color data in point cloud is represented by the index of its similar color in palette. To further improve the compression efficiency, the spatial redundancy between the indices of neighboring colors is also removed by marking them using a flag bit. Experimental results show that the proposed method achieves a better improvement of RD performance compared with that of the MPEG PCC reference software.
Recently, research and development to revitalize smart construction are being actively carried out. Accordingly, 3D mapping technology that digitizes construction site is drawing attention. To create a 3D digital map for construction site a point cloud generation method based on LiDAR(Light detection and ranging) using MMS(Mobile mapping system) is mainly used. The purpose of this study is to analyze the accuracy of MMS LiDAR-based point cloud data. As a result, accuracy of MMS point cloud data was analyzed as dx = 0.048m, dy = 0.018m, dz = 0.045m on average. In future studies, accuracy comparison of point cloud data produced via UAV(Unmanned aerial vegicle) photogrammetry and MMS LiDAR should be studied.
Jia, Qiong;Lee, M.K.;Dong, Tianyu;Kim, Kyu Tae;Jang, Euee S.
한국방송∙미디어공학회:학술대회논문집
/
한국방송∙미디어공학회 2022년도 하계학술대회
/
pp.825-828
/
2022
In this paper, we propose an efficient image size selection method for video-based point cloud compression. The current MPEG video-based point cloud compression reference encoding process configures a threshold on the size of images while converting point cloud data into images. Because the converted image is compressed and restored by the legacy video codec, the size of the image is one of the main components in influencing the compression efficiency. If the image size can be made smaller than the image size determined by the threshold, compression efficiency can be improved. Here, we studied how to improve the compression efficiency by selecting the best-fit image size generated during video-based point cloud compression. Experimental results show that the proposed method can reduce the encoding time by 6 percent without loss of coding performance compared to the test model 15.0 version of video-based point cloud encoder.
포인트 클라우드는 3D 오브젝트를 표현하기 위한 점들의 집합으로 3D 좌표 정보인 기하 정보와 색상, 반사율 등을 나타내는 속성 정보로 이루어져 있으며, 이러한 표현 방식으로 인해 2D 영상에 비해 방대한 양의 데이터를 가진다. 따라서, 포인트 클라우드 데이터를 전송하거나 다양한 분야에서 활용하기 위해서 포인트 클라우드 데이터를 압축하는 과정이 필수적으로 요구된다. 포인트 클라우드는 2D 영상과 같이 해당 영상을 구성하는 2D 기하 정보에 대응하는 색상 정보가 모두 존재하는 것과 달리, 3D 공간 중 일부만이 색상과 같은 속성 정보를 포함하여 포인트 클라우드를 표현하고 있기에, 기하 정보에 대한 별도의 처리도 요구된다. 이와 같은 포인트 클라우드의 특징을 기반으로 고밀도 포인트 클라우드 데이터의 압축 방안으로 국제 표준화 기구 ISO/IEC 산하 MPEG에서는 포인트 클라우드 영상을 사영한 뒤 2D DCT 기반의 2D 영상 압축 코덱으로 압축하는 V-PCC 를 표준화 중에 있다. 해당 표준은 3D 포인트 클라우드를 2D로 변환하여 압축을 진행하기에 3D 공간 정보를 정확하게 표현하기에는 한계가 존재한다. 이에, 본 논문에서는 포인트 클라우드 정지영상을 3D 상에서 3D DCT로 변환하여 포인트 클라우드 데이터를 압축하는 방안인 3D Discrete Cosine Transform based Point Cloud Compression을 제시하고, 2D DCT 기반의 V-PCC와 비교하여 3D DCT의 효율성을 확인하고자 한다.
최근 자율주행 분야가 4차 산업혁명 시대에 맞이하여 주요한 기술분야로 각광받고 있다. 자율주행 분야는 4차 산업의 핵심 기술의 집합체라고 볼 수 있는데, 이 중 자율주행 지원을 위한 정밀도로 지도 및 도로시설물 구축을 위한 DB 분야가 필수적인 부분이다. 기존 2차원 자료형식으로 제작되고 관리되던 지도 DB가 3차원으로 급격히 변화하고 있으며, 더불어 이러한 정밀도로 지도를 구축을 위한 핵심기술로 Mobile Mapping System(MMS)가 활발히 이용되고 있다. 특히 MSS에서 획득되는 다양한 자료 중에서 LiDAR를 통해 취득되는 정밀 Point Cloud는 정확한 위치 정보를 포함하고 있어, 정밀도로 지도 구축 및 도로시설물 관리 등을 위한 다양한 관련 DB 구축에 활용되고 있다. 하지만 현재는 정밀도로 지도 제작 시 3D 모델링을 위한 기반 데이터로만 활용되는 것으로만 국한되어 그 사용 범위가 넓지 않은 문제가 있다. 본 연구에서는 MMS 취득자료의 활용성을 높이기 위하여 MMS LiDAR Point Cloud를 활용하여 도로 주변 시설물을 추출하고, 그 위치를 현장조사 성과와 중첩하여 비교 분석하여 그 위치 정확도에 기준한 도로시설물 분야 활용성을 확인하고자 하였다. Point Cloud로부터 전신주와 통신지주 DB를 구축하고 도로명주소기본도와 위치 비교를 수행한 결과, Point Cloud에서 추출한 시설물 DB의 위치 정확도는 도로명주소기본도 보다 높은 것으로 확인되었다. 이를 통해 MMS Point Cloud 자료를 도로시설물 관리 분야에 충분히 활용하는 것이 가능하며, 추후 이를 통해 도로시설물 지도 확대 구축하고, 도로대장 관리 등에 적용하는 연구가 필요 할 것으로 판단된다.
본 논문에서는 지상라이다를 사용해 구조물을 측정한 점군데이터가 갖는 중복성을 피하고, 목표 구조물외에 불필요한 정보의 수를 감소시키도록 하는 점군데이터의 무손실 압축 기법을 제안한다. 제안된 방법을 적용하기 위해, 호프 변환을 이용하여 구조물과 지상라이다의 수평방향 사이의 각도를 찾아, 이를 점군데이터의 회전 변환에 적용하였다. 이로써 x축에 평행하도록 구성된 점군데이터에 대한 y좌표의 중복성은 기존의 데이터보다 많아지고, 따라서 압축률도 향상시킬 수 있다. 추가로, 불필요한 데이터를 찾아 정보량을 감소시키는 방법을 적용한다. 하나는 점군데이터를 데시메이션하는 것이고, 다른 하나는 목표 구조물이 갖는 y좌표의 범위를 찾아 목표로 하는 범위내 점군데이터만 추출하는 것이다. 제안한 방법은 실험을 통해 압축률이 향상되었음을 확인할 수 있다. 또한, 별도의 추가 정보 없이 점군데이터의 위치 정보만으로 데이터를 압축할 수 있고, 이 압축알고리듬으로 처리속도를 높일 수 있다.
To survive in the current shipbuilding industry, it is of vital importance for shipyards to have the ship components' accuracy evaluated efficiently during most of the manufacturing steps. Evaluating components' accuracy by comparing each component's point cloud data scanned by laser scanners and the ship's design data formatted in CAD cannot be processed efficiently when (1) extract components from point cloud data include irregular obstacles endogenously, or when (2) registration of the two data sets have no clear direction setting. This paper presents reformative point cloud data processing methods to solve these problems. K-d tree construction of the point cloud data fastens a neighbor searching of each point. Region growing method performed on the neighbor points of the seed point extracts the continuous part of the component, while curved surface fitting and B-spline curved line fitting at the edge of the continuous part recognize the neighbor domains of the same component divided by obstacles' shadows. The ICP (Iterative Closest Point) algorithm conducts a registration of the two sets of data after the proper registration's direction is decided by principal component analysis. By experiments conducted at the shipyard, 200 curved shell plates are extracted from the scanned point cloud data, and registrations are conducted between them and the designed CAD data using the proposed methods for an accuracy evaluation. Results show that the methods proposed in this paper support the accuracy evaluation targeted point cloud data processing efficiently in practice.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.