• 제목/요약/키워드: cloud point

검색결과 852건 처리시간 0.029초

Complete 3D Surface Reconstruction from Unstructured Point Cloud

  • Kim, Seok-Il;Li, Rixie
    • Journal of Mechanical Science and Technology
    • /
    • 제20권12호
    • /
    • pp.2034-2042
    • /
    • 2006
  • In this study, a complete 3D surface reconstruction method is proposed based on the concept that the vertices, of surface model can be completely matched to the unstructured point cloud. In order to generate the initial mesh model from the point cloud, the mesh subdivision of bounding box and shrink-wrapping algorithm are introduced. The control mesh model for well representing the topology of point cloud is derived from the initial mesh model by using the mesh simplification technique based on the original QEM algorithm, and the parametric surface model for approximately representing the geometry of point cloud is derived by applying the local subdivision surface fitting scheme on the control mesh model. And, to reconstruct the complete matching surface model, the insertion of isolated points on the parametric surface model and the mesh optimization are carried out. Especially, the fast 3D surface reconstruction is realized by introducing the voxel-based nearest-point search algorithm, and the simulation results reveal the availability of the proposed surface reconstruction method.

Effect of Additives on the Cloud Point of Polyethylene Glycols

  • Han, Suk-Kyu;Jhun, Byung-Hak
    • Archives of Pharmacal Research
    • /
    • 제7권1호
    • /
    • pp.1-9
    • /
    • 1984
  • Polyethylene glycol 20, 000 and 6, 000 were found to have an upper consolute temperature, called "cloud point", and the effects of various additives on the polythylene glycols were investigated in this study. Electrolytes lowered the cloud point in proportion to their concentrations through dehydration and electrostriction. It was found that anions played a more important role than cations and the effects of both the cations and the anions clearly followed the classical Hofmeister series. However, the Schultze Hardy rule holds for the effect of anions, and fails for the effect of cations. Salts of large polarizable anions such as iodide and thiocynate rather raised the cloud point, and their effects were ascribed to the fact that they break the water structure and weaken hydrophobic bonding of the polyxyethylene moiety. Nitrates of polyvalent cations also raised the cloud point. This was ascribed to the complex formation between the polyvalent cations and ether oxygens of the polyoxyethylenes. This explained the failure 'of the Schultz-Hardy rule for cations. Uncharged aromatic compounds drastically lowered the clound point, while aliphatic alcohols slightly lowered the cloud point, This result suggests that there might be some interaction between ether oxygens and aromatic nucleus.c nucleus.

  • PDF

라이다 점군 밀도에 강인한 맵 오차 측정 기구 설계 및 알고리즘 (Map Error Measuring Mechanism Design and Algorithm Robust to Lidar Sparsity)

  • 정상우;정민우;김아영
    • 로봇학회논문지
    • /
    • 제16권3호
    • /
    • pp.189-198
    • /
    • 2021
  • In this paper, we introduce the software/hardware system that can reliably calculate the distance from sensor to the model regardless of point cloud density. As the 3d point cloud map is widely adopted for SLAM and computer vision, the accuracy of point cloud map is of great importance. However, the 3D point cloud map obtained from Lidar may reveal different point cloud density depending on the choice of sensor, measurement distance and the object shape. Currently, when measuring map accuracy, high reflective bands are used to generate specific points in point cloud map where distances are measured manually. This manual process is time and labor consuming being highly affected by Lidar sparsity level. To overcome these problems, this paper presents a hardware design that leverage high intensity point from three planar surface. Furthermore, by calculating distance from sensor to the device, we verified that the automated method is much faster than the manual procedure and robust to sparsity by testing with RGB-D camera and Lidar. As will be shown, the system performance is not limited to indoor environment by progressing the experiment using Lidar sensor at outdoor environment.

Palette-based Color Attribute Compression for Point Cloud Data

  • Cui, Li;Jang, Euee S.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권6호
    • /
    • pp.3108-3120
    • /
    • 2019
  • Point cloud is widely used in 3D applications due to the recent advancement of 3D data acquisition technology. Polygonal mesh-based compression has been dominant since it can replace many points sharing a surface with a set of vertices with mesh structure. Recent point cloud-based applications demand more point-based interactivity, which makes point cloud compression (PCC) becomes more attractive than 3D mesh compression. Interestingly, an exploration activity has been started to explore the feasibility of PCC standard in MPEG. In this paper, a new color attribute compression method is presented for point cloud data. The proposed method utilizes the spatial redundancy among color attribute data to construct a color palette. The color palette is constructed by using K-means clustering method and each color data in point cloud is represented by the index of its similar color in palette. To further improve the compression efficiency, the spatial redundancy between the indices of neighboring colors is also removed by marking them using a flag bit. Experimental results show that the proposed method achieves a better improvement of RD performance compared with that of the MPEG PCC reference software.

건설현장 MMS 라이다 기반 점군 데이터의 정확도 분석 (Accuracy Analysis of Point Cloud Data Produced Via Mobile Mapping System LiDAR in Construction Site)

  • 박재우;염동준
    • 한국산업융합학회 논문집
    • /
    • 제25권3호
    • /
    • pp.397-406
    • /
    • 2022
  • Recently, research and development to revitalize smart construction are being actively carried out. Accordingly, 3D mapping technology that digitizes construction site is drawing attention. To create a 3D digital map for construction site a point cloud generation method based on LiDAR(Light detection and ranging) using MMS(Mobile mapping system) is mainly used. The purpose of this study is to analyze the accuracy of MMS LiDAR-based point cloud data. As a result, accuracy of MMS point cloud data was analyzed as dx = 0.048m, dy = 0.018m, dz = 0.045m on average. In future studies, accuracy comparison of point cloud data produced via UAV(Unmanned aerial vegicle) photogrammetry and MMS LiDAR should be studied.

Efficient Image Size Selection for MPEG Video-based Point Cloud Compression

  • Jia, Qiong;Lee, M.K.;Dong, Tianyu;Kim, Kyu Tae;Jang, Euee S.
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2022년도 하계학술대회
    • /
    • pp.825-828
    • /
    • 2022
  • In this paper, we propose an efficient image size selection method for video-based point cloud compression. The current MPEG video-based point cloud compression reference encoding process configures a threshold on the size of images while converting point cloud data into images. Because the converted image is compressed and restored by the legacy video codec, the size of the image is one of the main components in influencing the compression efficiency. If the image size can be made smaller than the image size determined by the threshold, compression efficiency can be improved. Here, we studied how to improve the compression efficiency by selecting the best-fit image size generated during video-based point cloud compression. Experimental results show that the proposed method can reduce the encoding time by 6 percent without loss of coding performance compared to the test model 15.0 version of video-based point cloud encoder.

  • PDF

2D 및 3D DCT를 활용한 포인트 클라우드 압축 비교 실험 (Comparative Experiment of 2D and 3D DCT Point Cloud Compression)

  • 남귀중;김준식;한무현;김규헌;황민규
    • 방송공학회논문지
    • /
    • 제26권5호
    • /
    • pp.553-565
    • /
    • 2021
  • 포인트 클라우드는 3D 오브젝트를 표현하기 위한 점들의 집합으로 3D 좌표 정보인 기하 정보와 색상, 반사율 등을 나타내는 속성 정보로 이루어져 있으며, 이러한 표현 방식으로 인해 2D 영상에 비해 방대한 양의 데이터를 가진다. 따라서, 포인트 클라우드 데이터를 전송하거나 다양한 분야에서 활용하기 위해서 포인트 클라우드 데이터를 압축하는 과정이 필수적으로 요구된다. 포인트 클라우드는 2D 영상과 같이 해당 영상을 구성하는 2D 기하 정보에 대응하는 색상 정보가 모두 존재하는 것과 달리, 3D 공간 중 일부만이 색상과 같은 속성 정보를 포함하여 포인트 클라우드를 표현하고 있기에, 기하 정보에 대한 별도의 처리도 요구된다. 이와 같은 포인트 클라우드의 특징을 기반으로 고밀도 포인트 클라우드 데이터의 압축 방안으로 국제 표준화 기구 ISO/IEC 산하 MPEG에서는 포인트 클라우드 영상을 사영한 뒤 2D DCT 기반의 2D 영상 압축 코덱으로 압축하는 V-PCC 를 표준화 중에 있다. 해당 표준은 3D 포인트 클라우드를 2D로 변환하여 압축을 진행하기에 3D 공간 정보를 정확하게 표현하기에는 한계가 존재한다. 이에, 본 논문에서는 포인트 클라우드 정지영상을 3D 상에서 3D DCT로 변환하여 포인트 클라우드 데이터를 압축하는 방안인 3D Discrete Cosine Transform based Point Cloud Compression을 제시하고, 2D DCT 기반의 V-PCC와 비교하여 3D DCT의 효율성을 확인하고자 한다.

Mobile Mapping System Point Cloud를 활용한 도로주변 시설물 DB 구축 및 위치 정확도 평가 (Evaluating a Positioning Accuracy of Roadside Facilities DB Constructed from Mobile Mapping System Point Cloud)

  • 김재학;이홍술;노수래;이동하
    • 한국지리정보학회지
    • /
    • 제22권3호
    • /
    • pp.99-106
    • /
    • 2019
  • 최근 자율주행 분야가 4차 산업혁명 시대에 맞이하여 주요한 기술분야로 각광받고 있다. 자율주행 분야는 4차 산업의 핵심 기술의 집합체라고 볼 수 있는데, 이 중 자율주행 지원을 위한 정밀도로 지도 및 도로시설물 구축을 위한 DB 분야가 필수적인 부분이다. 기존 2차원 자료형식으로 제작되고 관리되던 지도 DB가 3차원으로 급격히 변화하고 있으며, 더불어 이러한 정밀도로 지도를 구축을 위한 핵심기술로 Mobile Mapping System(MMS)가 활발히 이용되고 있다. 특히 MSS에서 획득되는 다양한 자료 중에서 LiDAR를 통해 취득되는 정밀 Point Cloud는 정확한 위치 정보를 포함하고 있어, 정밀도로 지도 구축 및 도로시설물 관리 등을 위한 다양한 관련 DB 구축에 활용되고 있다. 하지만 현재는 정밀도로 지도 제작 시 3D 모델링을 위한 기반 데이터로만 활용되는 것으로만 국한되어 그 사용 범위가 넓지 않은 문제가 있다. 본 연구에서는 MMS 취득자료의 활용성을 높이기 위하여 MMS LiDAR Point Cloud를 활용하여 도로 주변 시설물을 추출하고, 그 위치를 현장조사 성과와 중첩하여 비교 분석하여 그 위치 정확도에 기준한 도로시설물 분야 활용성을 확인하고자 하였다. Point Cloud로부터 전신주와 통신지주 DB를 구축하고 도로명주소기본도와 위치 비교를 수행한 결과, Point Cloud에서 추출한 시설물 DB의 위치 정확도는 도로명주소기본도 보다 높은 것으로 확인되었다. 이를 통해 MMS Point Cloud 자료를 도로시설물 관리 분야에 충분히 활용하는 것이 가능하며, 추후 이를 통해 도로시설물 지도 확대 구축하고, 도로대장 관리 등에 적용하는 연구가 필요 할 것으로 판단된다.

목표 구조물에 대한 점군데이터의 무손실 압축 기법에 관한 연구 (A Study on a Lossless Compression Scheme for Cloud Point Data of the Target Construction)

  • 방민석;윤기방;김기두
    • 전자공학회논문지CI
    • /
    • 제48권5호
    • /
    • pp.33-41
    • /
    • 2011
  • 본 논문에서는 지상라이다를 사용해 구조물을 측정한 점군데이터가 갖는 중복성을 피하고, 목표 구조물외에 불필요한 정보의 수를 감소시키도록 하는 점군데이터의 무손실 압축 기법을 제안한다. 제안된 방법을 적용하기 위해, 호프 변환을 이용하여 구조물과 지상라이다의 수평방향 사이의 각도를 찾아, 이를 점군데이터의 회전 변환에 적용하였다. 이로써 x축에 평행하도록 구성된 점군데이터에 대한 y좌표의 중복성은 기존의 데이터보다 많아지고, 따라서 압축률도 향상시킬 수 있다. 추가로, 불필요한 데이터를 찾아 정보량을 감소시키는 방법을 적용한다. 하나는 점군데이터를 데시메이션하는 것이고, 다른 하나는 목표 구조물이 갖는 y좌표의 범위를 찾아 목표로 하는 범위내 점군데이터만 추출하는 것이다. 제안한 방법은 실험을 통해 압축률이 향상되었음을 확인할 수 있다. 또한, 별도의 추가 정보 없이 점군데이터의 위치 정보만으로 데이터를 압축할 수 있고, 이 압축알고리듬으로 처리속도를 높일 수 있다.

Efficient point cloud data processing in shipbuilding: Reformative component extraction method and registration method

  • Sun, Jingyu;Hiekata, Kazuo;Yamato, Hiroyuki;Nakagaki, Norito;Sugawara, Akiyoshi
    • Journal of Computational Design and Engineering
    • /
    • 제1권3호
    • /
    • pp.202-212
    • /
    • 2014
  • To survive in the current shipbuilding industry, it is of vital importance for shipyards to have the ship components' accuracy evaluated efficiently during most of the manufacturing steps. Evaluating components' accuracy by comparing each component's point cloud data scanned by laser scanners and the ship's design data formatted in CAD cannot be processed efficiently when (1) extract components from point cloud data include irregular obstacles endogenously, or when (2) registration of the two data sets have no clear direction setting. This paper presents reformative point cloud data processing methods to solve these problems. K-d tree construction of the point cloud data fastens a neighbor searching of each point. Region growing method performed on the neighbor points of the seed point extracts the continuous part of the component, while curved surface fitting and B-spline curved line fitting at the edge of the continuous part recognize the neighbor domains of the same component divided by obstacles' shadows. The ICP (Iterative Closest Point) algorithm conducts a registration of the two sets of data after the proper registration's direction is decided by principal component analysis. By experiments conducted at the shipyard, 200 curved shell plates are extracted from the scanned point cloud data, and registrations are conducted between them and the designed CAD data using the proposed methods for an accuracy evaluation. Results show that the methods proposed in this paper support the accuracy evaluation targeted point cloud data processing efficiently in practice.