• Title/Summary/Keyword: cloud computing systems

Search Result 602, Processing Time 0.033 seconds

Precision monitoring of radial growth of trees and micro-climate at a Korean Fir (Abies koreana Wilson) forest at 10 minutes interval in 2016 on Mt. Hallasan National Park, Jeju Island, Korea

  • Kim, Eun-Shik;Cho, Hong-Bum;Heo, Daeyoung;Kim, Nae-Soo;Kim, Young-Sun;Lee, Kyeseon;Lee, Sung-Hoon;Ryu, Jaehong
    • Journal of Ecology and Environment
    • /
    • v.43 no.2
    • /
    • pp.226-245
    • /
    • 2019
  • To understand the dynamics of radial growth of trees and micro-climate at a site of Korean fir (Abies koreana Wilson) forest on high-altitude area of Mt. Hallasan National Park, Jeju Island, Korea, high precision dendrometers were installed on the stems of Korean fir trees, and the sensors for measuring micro-climate of the forest at 10 minutes interval were also installed at the forest. Data from the sensors were sent to nodes, collected to a gateway wireless, and transmitted to a data server using mobile phone communication system. By analyzing the radial growth data for the trees during the growing season in 2016, we can estimate that the radial growth of Korean fir trees initiated in late April to early May and ceased in late August to early September, which indicates that period for the radial growth was about 4 months in 2016. It is interesting to observe that the daily ambient temperature and the daily soil temperature at the depth of 20 cm coincided with the values of about 10 ℃ when the radial growth of the trees initiated in 2016. When the radial growth ceased, the values of the ambient temperature went down below about 15 ℃ and 16 ℃, respectively. While the ambient temperature and the soil temperature are evaluated to be the good indicators for the initiation and the cessation of radial growth, it becomes clear that radii of tree stems showed diurnal growth patterns affected by diurnal change of ambient temperature. In addition, the wetting and drying of the surface of the tree stems affected by precipitation became the additional factors that affect the expansion and shrinkage of the tree stems at the forest site. While it is interesting to note that the interrelationships among the micro-climatic factors at the forest site were well explained through this study, it should be recognized that the precision monitoring made possible with the application of high resolution sensors in the measurement of the radial increment combined with the observation of 10 minutes interval with aids of information and communication technology in the ecosystem observation.

The effects of the Partnership in Supply Chain Management with Appling Social Business on the outcome of the SCM (소셜 비즈니스를 활용한 공급 사슬에서의 파트너십이 SCM 성과에 미치는 영향)

  • Kim, So-Chun;Lim, Wang-Kyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.1
    • /
    • pp.95-110
    • /
    • 2014
  • The purpose of this research is to further investigate the influence of partnership between with the mediator effect of the social business on the outcome of SCM. IT technology fusion electronic tags, mobile phone, such as cloud computing is also activated in supply chain management of recently, business is faster, if social business is applied here that are smarter, customers or suppliers, there may be communication directly and to further improve the relationship partnership. 150 questionnaires were sent to companies that have introduced SCM to their systems and are operating it. Among 150 questionnaires, 127 collected data were analyzed excluding incomplete 23 data. Statistical methods used in this study were frequency analysis, factor analysis, reliability analysis, t-test, ANOVA, path analysis, Scheffe test and Sobel test with Amos 18.0. and SPSS 21.0. The analytical results are as follows. First, the more the reliability, information share, continuous transaction, effects on the social business are getting higher, the interdependence has little impact on it. Second, the impact on the outcome of SCM, partnerships between companies, showed a significant influence the reliability, the share of information, the continuous transaction, but the interdependence was analysed as an uninfluential factor. Third, the social business is analyses to have a mediator effect in relationship between the partnership and the outcome of SCM.

Improvement of legal systems of automobile in the era of the 4th industrial revolution (4차 산업혁명 시대의 자동차 관련 법제의 합리적 개선방안)

  • Park, Jong-Su
    • Journal of Legislation Research
    • /
    • no.53
    • /
    • pp.269-310
    • /
    • 2017
  • This article aims at the study on Improvement of legal System which is related to automated vehicles in the era of the 4th industrial revolution. Legal aspects of driving automation have two view points. One is to permit a automated vehicle, the other is to regulate the behavior of driver on the road. Signifying elements of the 4th industrial revolution are IoT, AI, big data, cloud computing etc. Automated vehicles are the imbodiment of those new ICT technologies. The vehicle management act(VMA) rules about vehicle registration and approval of vehicle types. VMA defines a automated vehicle as a vehicle which can be self driven without handling of driver or passenger. Vehicle makers can take temporary driving permission for testing and research the driving automation. Current definition of automated vehicle of VMA is not enough for including all levels of SAE driving automation. In the VMA must be made also a new vehicle safty standard for automated vehicle. In the national assembly is curruntly pending three draft bills about legislation of artificial intelligence. Driving automation and AI technologies must be parallel developed. It is highly expected that more proceeding research of driving automation can be realized as soon as possible.

Design of detection method for smoking based on Deep Neural Network (딥뉴럴네트워크 기반의 흡연 탐지기법 설계)

  • Lee, Sanghyun;Yoon, Hyunsoo;Kwon, Hyun
    • Convergence Security Journal
    • /
    • v.21 no.1
    • /
    • pp.191-200
    • /
    • 2021
  • Artificial intelligence technology is developing in an environment where a lot of data is produced due to the development of computing technology, a cloud environment that can store data, and the spread of personal mobile phones. Among these artificial intelligence technologies, the deep neural network provides excellent performance in image recognition and image classification. There have been many studies on image detection for forest fires and fire prevention using such a deep neural network, but studies on detection of cigarette smoking were insufficient. Meanwhile, military units are establishing surveillance systems for various facilities through CCTV, and it is necessary to detect smoking near ammunition stores or non-smoking areas to prevent fires and explosions. In this paper, by reflecting experimentally optimized numerical values such as activation function and learning rate, we did the detection of smoking pictures and non-smoking pictures in two cases. As experimental data, data was constructed by crawling using pictures of smoking and non-smoking published on the Internet, and a machine learning library was used. As a result of the experiment, when the learning rate is 0.004 and the optimization algorithm Adam is used, it can be seen that the accuracy of 93% and F1-score of 94% are obtained.

Analysis of Minimum Logistics Cost in SMEs using Korean-type CIPs Payment System (한국형 CIPs 결제 시스템을 이용한 중소기업의 최소 물류비용 분석)

  • Kim, Ilgoun;Jeong, Jongpil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.1
    • /
    • pp.7-18
    • /
    • 2021
  • Recently, various connected industrial parks (CIPs) architectures using new technologies such as cloud computing, CPS, big data, fifth-generation mobile communication 5G, IIoT, VR-AR, and ventilation transportation AI algorithms have been proposed in Korea. Korea's small and medium-sized enterprises do not have the upper hand in technological competitiveness than overseas advanced countries such as the United States, Europe and Japan. For this reason, Korea's small and medium-sized enterprises have to invest a lot of money in technology research and development. As a latecomer, Korean SMEs need to improve their profitability in order to find sustainable growth potential. Financially, it is most efficient for small and medium-sized Korean companies to cut costs to increase their profitability. This paper made profitability improvement by reducing costs for small and medium-sized enterprises located in CIPs in Korea a major task. VJP (Vehicle Action Program) was noted as a way to reduce costs for small and medium-sized enterprises located in CIPs in Korea. The method of achieving minimum logistics costs for small businesses through the Korean CIPs payment system was analyzed. The details of the new Korean CIPs payment system were largely divided into four types: "Business", "Data", "Technique", and "Finance". Cost Benefit Analysis (CBA) was used as a performance analysis method for CIPs payment systems.

Anomaly Detection Methodology Based on Multimodal Deep Learning (멀티모달 딥 러닝 기반 이상 상황 탐지 방법론)

  • Lee, DongHoon;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.2
    • /
    • pp.101-125
    • /
    • 2022
  • Recently, with the development of computing technology and the improvement of the cloud environment, deep learning technology has developed, and attempts to apply deep learning to various fields are increasing. A typical example is anomaly detection, which is a technique for identifying values or patterns that deviate from normal data. Among the representative types of anomaly detection, it is very difficult to detect a contextual anomaly that requires understanding of the overall situation. In general, detection of anomalies in image data is performed using a pre-trained model trained on large data. However, since this pre-trained model was created by focusing on object classification of images, there is a limit to be applied to anomaly detection that needs to understand complex situations created by various objects. Therefore, in this study, we newly propose a two-step pre-trained model for detecting abnormal situation. Our methodology performs additional learning from image captioning to understand not only mere objects but also the complicated situation created by them. Specifically, the proposed methodology transfers knowledge of the pre-trained model that has learned object classification with ImageNet data to the image captioning model, and uses the caption that describes the situation represented by the image. Afterwards, the weight obtained by learning the situational characteristics through images and captions is extracted and fine-tuning is performed to generate an anomaly detection model. To evaluate the performance of the proposed methodology, an anomaly detection experiment was performed on 400 situational images and the experimental results showed that the proposed methodology was superior in terms of anomaly detection accuracy and F1-score compared to the existing traditional pre-trained model.

An Improvement of Kubernetes Auto-Scaling Based on Multivariate Time Series Analysis (다변량 시계열 분석에 기반한 쿠버네티스 오토-스케일링 개선)

  • Kim, Yong Hae;Kim, Young Han
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.3
    • /
    • pp.73-82
    • /
    • 2022
  • Auto-scaling is one of the most important functions for cloud computing technology. Even if the number of users or service requests is explosively increased or decreased, system resources and service instances can be appropriately expanded or reduced to provide services suitable for the situation and it can improves stability and cost-effectiveness. However, since the policy is performed based on a single metric data at the time of monitoring a specific system resource, there is a problem that the service is already affected or the service instance that is actually needed cannot be managed in detail. To solve this problem, in this paper, we propose a method to predict system resource and service response time using a multivariate time series analysis model and establish an auto-scaling policy based on this. To verify this, implement it as a custom scheduler in the Kubernetes environment and compare it with the Kubernetes default auto-scaling method through experiments. The proposed method utilizes predictive data based on the impact between system resources and response time to preemptively execute auto-scaling for expected situations, thereby securing system stability and providing as much as necessary within the scope of not degrading service quality. It shows results that allow you to manage instances in detail.

An Efficient Dual Queue Strategy for Improving Storage System Response Times (저장시스템의 응답 시간 개선을 위한 효율적인 이중 큐 전략)

  • Hyun-Seob Lee
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.3
    • /
    • pp.19-24
    • /
    • 2024
  • Recent advances in large-scale data processing technologies such as big data, cloud computing, and artificial intelligence have increased the demand for high-performance storage devices in data centers and enterprise environments. In particular, the fast data response speed of storage devices is a key factor that determines the overall system performance. Solid state drives (SSDs) based on the Non-Volatile Memory Express (NVMe) interface are gaining traction, but new bottlenecks are emerging in the process of handling large data input and output requests from multiple hosts simultaneously. SSDs typically process host requests by sequentially stacking them in an internal queue. When long transfer length requests are processed first, shorter requests wait longer, increasing the average response time. To solve this problem, data transfer timeout and data partitioning methods have been proposed, but they do not provide a fundamental solution. In this paper, we propose a dual queue based scheduling scheme (DQBS), which manages the data transfer order based on the request order in one queue and the transfer length in the other queue. Then, the request time and transmission length are comprehensively considered to determine the efficient data transmission order. This enables the balanced processing of long and short requests, thus reducing the overall average response time. The simulation results show that the proposed method outperforms the existing sequential processing method. This study presents a scheduling technique that maximizes data transfer efficiency in a high-performance SSD environment, which is expected to contribute to the development of next-generation high-performance storage systems

Open Digital Textbook for Smart Education (스마트교육을 위한 오픈 디지털교과서)

  • Koo, Young-Il;Park, Choong-Shik
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.177-189
    • /
    • 2013
  • In Smart Education, the roles of digital textbook is very important as face-to-face media to learners. The standardization of digital textbook will promote the industrialization of digital textbook for contents providers and distributers as well as learner and instructors. In this study, the following three objectives-oriented digital textbooks are looking for ways to standardize. (1) digital textbooks should undertake the role of the media for blended learning which supports on-off classes, should be operating on common EPUB viewer without special dedicated viewer, should utilize the existing framework of the e-learning learning contents and learning management. The reason to consider the EPUB as the standard for digital textbooks is that digital textbooks don't need to specify antoher standard for the form of books, and can take advantage od industrial base with EPUB standards-rich content and distribution structure (2) digital textbooks should provide a low-cost open market service that are currently available as the standard open software (3) To provide appropriate learning feedback information to students, digital textbooks should provide a foundation which accumulates and manages all the learning activity information according to standard infrastructure for educational Big Data processing. In this study, the digital textbook in a smart education environment was referred to open digital textbook. The components of open digital textbooks service framework are (1) digital textbook terminals such as smart pad, smart TVs, smart phones, PC, etc., (2) digital textbooks platform to show and perform digital contents on digital textbook terminals, (3) learning contents repository, which exist on the cloud, maintains accredited learning, (4) App Store providing and distributing secondary learning contents and learning tools by learning contents developing companies, and (5) LMS as a learning support/management tool which on-site class teacher use for creating classroom instruction materials. In addition, locating all of the hardware and software implement a smart education service within the cloud must have take advantage of the cloud computing for efficient management and reducing expense. The open digital textbooks of smart education is consdered as providing e-book style interface of LMS to learners. In open digital textbooks, the representation of text, image, audio, video, equations, etc. is basic function. But painting, writing, problem solving, etc are beyond the capabilities of a simple e-book. The Communication of teacher-to-student, learner-to-learnert, tems-to-team is required by using the open digital textbook. To represent student demographics, portfolio information, and class information, the standard used in e-learning is desirable. To process learner tracking information about the activities of the learner for LMS(Learning Management System), open digital textbook must have the recording function and the commnincating function with LMS. DRM is a function for protecting various copyright. Currently DRMs of e-boook are controlled by the corresponding book viewer. If open digital textbook admitt DRM that is used in a variety of different DRM standards of various e-book viewer, the implementation of redundant features can be avoided. Security/privacy functions are required to protect information about the study or instruction from a third party UDL (Universal Design for Learning) is learning support function for those with disabilities have difficulty in learning courses. The open digital textbook, which is based on E-book standard EPUB 3.0, must (1) record the learning activity log information, and (2) communicate with the server to support the learning activity. While the recording function and the communication function, which is not determined on current standards, is implemented as a JavaScript and is utilized in the current EPUB 3.0 viewer, ths strategy of proposing such recording and communication functions as the next generation of e-book standard, or special standard (EPUB 3.0 for education) is needed. Future research in this study will implement open source program with the proposed open digital textbook standard and present a new educational services including Big Data analysis.

Exploring the 4th Industrial Revolution Technology from the Landscape Industry Perspective (조경산업 관점에서 4차 산업혁명 기술의 탐색)

  • Choi, Ja-Ho;Suh, Joo-Hwan
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.47 no.2
    • /
    • pp.59-75
    • /
    • 2019
  • This study was carried out to explore the 4th Industrial Revolution technology from the perspective of the landscape industry to provide the basic data necessary to increase the virtuous circle value. The 4th Industrial Revolution, the characteristics of the landscape industry and urban regeneration were considered and the methodology was established and studied including the technical classification system suitable for systematic research, which was selected as a framework. First, the 4th Industrial Revolution technology based on digital data was selected, which could be utilized to increase the value of the virtuous circle for the landscape industry. From 'Element Technology Level', and 'Core Technology' such as the Internet of Things, Cloud Computing, Big Data, Artificial Intelligence, Robot, 'Peripheral Technology', Virtual or Augmented Reality, Drones, 3D 4D Printing, and 3D Scanning were highlighted as the 4th Industrial Revolution technology. It has been shown that it is possible to increase the value of the virtuous circle when applied at the 'Trend Level', in particular to the landscape industry. The 'System Level' was analyzed as a general-purpose technology, and based on the platform, the level of element technology(computers, and smart devices) was systematically interconnected, and illuminated with the 4th Industrial Revolution technology based on digital data. The application of the 'Trend Level' specific to the landscape industry has been shown to be an effective technology for increasing the virtuous circle values. It is possible to realize all synergistic effects and implementation of the proposed method at the trend level applying the element technology level. Smart gardens, smart parks, etc. have been analyzed to the level they should pursue. It was judged that Smart City, Smart Home, Smart Farm, and Precision Agriculture, Smart Tourism, and Smart Health Care could be highly linked through the collaboration among technologies in adjacent areas at the Trend Level. Additionally, various utilization measures of related technology applied at the Trend Level were highlighted in the process of urban regeneration, public service space creation, maintenance, and public service. In other words, with the realization of ubiquitous computing, Hyper-Connectivity, Hyper-Reality, Hyper-Intelligence, and Hyper-Convergence were proposed, reflecting the basic characteristics of digital technology in the landscape industry can be achieved. It was analyzed that the landscaping industry was effectively accommodating and coordinating with the needs of new characters, education and consulting, as well as existing tasks, even when participating in urban regeneration projects. In particular, it has been shown that the overall landscapig area is effective in increasing the virtuous circle value when it systems the related technology at the trend level by linking maintenance with strategic bridgehead. This is because the industrial structure is effective in distributing data and information produced from various channels. Subsequent research, such as demonstrating the fusion of the 4th Industrial Revolution technology based on the use of digital data in creation, maintenance, and service of actual landscape space is necessary.