• Title/Summary/Keyword: cloud computing systems

Search Result 602, Processing Time 0.028 seconds

Real Time Distributed Parallel Processing to Visualize Noise Map with Big Sensor Data and GIS Data for Smart Cities (스마트시티의 빅 센서 데이터와 빅 GIS 데이터를 융합하여 실시간 온라인 소음지도로 시각화하기 위한 분산병렬처리 방법론)

  • Park, Jong-Won;Sim, Ye-Chan;Jung, Hae-Sun;Lee, Yong-Woo
    • Journal of Internet Computing and Services
    • /
    • v.19 no.4
    • /
    • pp.1-6
    • /
    • 2018
  • In smart cities, data from various kinds of sensors are collected and processed to provide smart services to the citizens. Noise information services with noise maps using the collected sensor data from various kinds of ubiquitous sensor networks is one of them. This paper presents a research result which generates three dimensional (3D) noise maps in real-time for smart cities. To make a noise map, we have to converge many informal data which include big image data of geographical Information and massive sensor data. Making such a 3D noise map in real-time requires the processing of the stream data from the ubiquitous sensor networks in real-time and the convergence operation in real-time. They are very challenging works. We developed our own methodology for real-time distributed and parallel processing for it and present it in this paper. Further, we developed our own real-time 3D noise map generation system, with the methodology. The system uses open source softwares for it. Here in this paper, we do introduce one of our systems which uses Apache Storm. We did performance evaluation using the developed system. Cloud computing was used for the performance evaluation experiments. It was confirmed that our system was working properly with good performance and the system can produce the 3D noise maps in real-time. The performance evaluation results are given in this paper, as well.

A Study on the Performance of Cloud-based VDI Adoption: Comparing between IS administrators and business users (클라우드 기반 VDI 도입 성과에 관한 연구 - 시스템 관리자와 일반 사용자의 비교를 중심으로 -)

  • Kim, Il-Han;Kwon, Sun-Dong
    • Management & Information Systems Review
    • /
    • v.37 no.2
    • /
    • pp.149-167
    • /
    • 2018
  • The purpose of this study is to analyze the performance of Virtual Desktop Infrastructure(VDI) adoption. VDI performance was measured by IS manager (system quality, security, and managerial operation) and business user (usability, access, and user satisfaction). The survey questionnaires were developed for measuring VDI performance. 84 data samples were collected from the companies that had adopted cloud-based VDI. This research model was verified by Smart-PLS and SPSS. The research findings were as follows: First, the companies using VDI experienced actual performance, but they did not attain their expectation. Second, as results of comparing between IS managers and business users, IS administrators had considerably higher performance than business users, which indicates that there were big differences in performance perception among users. Compared with prior research such as technical trend, system construction, and performance improvement, this study has the following implications. First, by comparing the expected performance with the actual performance of the companies that have implemented and operating VDI, it was suggested how a company that wants to adopt VDI can manage the expectation level of VDI and achieve higher actual performance. Second, because the perception of VDI performance differs between business users and system managers, it is meaningful that a fair evaluation of VDI performance requires a balanced consideration of business users and system managers.

Implementation and Performance Measuring of Erasure Coding of Distributed File System (분산 파일시스템의 소거 코딩 구현 및 성능 비교)

  • Kim, Cheiyol;Kim, Youngchul;Kim, Dongoh;Kim, Hongyeon;Kim, Youngkyun;Seo, Daewha
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1515-1527
    • /
    • 2016
  • With the growth of big data, machine learning, and cloud computing, the importance of storage that can store large amounts of unstructured data is growing recently. So the commodity hardware based distributed file systems such as MAHA-FS, GlusterFS, and Ceph file system have received a lot of attention because of their scale-out and low-cost property. For the data fault tolerance, most of these file systems uses replication in the beginning. But as storage size is growing to tens or hundreds of petabytes, the low space efficiency of the replication has been considered as a problem. This paper applied erasure coding data fault tolerance policy to MAHA-FS for high space efficiency and introduces VDelta technique to solve data consistency problem. In this paper, we compares the performance of two file systems, MAHA-FS and GlusterFS. They have different IO processing architecture, the former is server centric and the latter is client centric architecture. We found the erasure coding performance of MAHA-FS is better than GlusterFS.

LSTM-based Fire and Odor Prediction Model for Edge System (엣지 시스템을 위한 LSTM 기반 화재 및 악취 예측 모델)

  • Youn, Joosang;Lee, TaeJin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.2
    • /
    • pp.67-72
    • /
    • 2022
  • Recently, various intelligent application services using artificial intelligence are being actively developed. In particular, research on artificial intelligence-based real-time prediction services is being actively conducted in the manufacturing industry, and the demand for artificial intelligence services that can detect and predict fire and odors is very high. However, most of the existing detection and prediction systems do not predict the occurrence of fires and odors, but rather provide detection services after occurrence. This is because AI-based prediction service technology is not applied in existing systems. In addition, fire prediction, odor detection and odor level prediction services are services with ultra-low delay characteristics. Therefore, in order to provide ultra-low-latency prediction service, edge computing technology is combined with artificial intelligence models, so that faster inference results can be applied to the field faster than the cloud is being developed. Therefore, in this paper, we propose an LSTM algorithm-based learning model that can be used for fire prediction and odor detection/prediction, which are most required in the manufacturing industry. In addition, the proposed learning model is designed to be implemented in edge devices, and it is proposed to receive real-time sensor data from the IoT terminal and apply this data to the inference model to predict fire and odor conditions in real time. The proposed model evaluated the prediction accuracy of the learning model through three performance indicators, and the evaluation result showed an average performance of over 90%.

Analysis of Industry-academia-research Cooperation Networks in the Field of Artificial Intelligence (인공지능 산·학·연 협력 공동연구 네트워크 분석)

  • Junghwan Lee;Seongsu Jang
    • Information Systems Review
    • /
    • v.26 no.2
    • /
    • pp.155-167
    • /
    • 2024
  • This study recognized the importance of joint research in the field of artificial intelligence and analyzed the characteristics of the industry-academic-research technological cooperation ecosystem focusing on patents from the perspective of the Techno-Economic Segment (TES). To this end, economic entities such as companies, universities, and research institutes within the ecosystem were identified for 7,062 joint research projects out of 113,289 artificial intelligence patents over the past 10 years filed in IP5 countries since 2012. Next, this study identified the topics of technological cooperation and the characteristics of cooperation. As a result of the analysis, technological cooperation is increasing, and the frequency of all types of cooperation was high in industry-to-industry (40%) and industry-to-university (25.2%) relationships. Here, this study confirmed that the role of universities is being strengthened, with an increase in the ratio of companies with strengths in funding and analytical data, industry and universities with excellent research personnel (9.8%), and cooperation between universities (1.9%). In addition, as a result of identifying collaborative patent research areas of interest and collaborative relationships through topic modeling and network analysis, overall similar research interests were derived regardless of the type of cooperation, and applications such as autonomous driving, edge computing, cloud, marketing, and consumer behavior analysis were derived. It was confirmed that the scope of research was expanding, collaborating entities were becoming more diverse, and a large-scale network including Chinese-centered universities was emerging.

The Role of Home Economics Education in the Fourth Industrial Revolution (4차 산업혁명시대 가정과교육의 역할)

  • Lee, Eun-hee
    • Journal of Korean Home Economics Education Association
    • /
    • v.31 no.4
    • /
    • pp.149-161
    • /
    • 2019
  • At present, we are at the point of change of the 4th industrial revolution era due to the development of artificial intelligence(AI) and rapid technological innovation that no one can predict until now. This study started from the question of 'What role should home economics education play in the era of the Fourth Industrial Revolution?'. The Fourth Industrial Revolution is characterized by AI, cloud computing, Internet of Things(IoT), big data, and Online to Offline(O2O). It will drastically change the social system, science and technology and the structure of the profession. Since the dehumanization of robots and artificial intelligence may occur, the 4th Industrial Revolution Education should be sought to foster future human resources with humanity and citizenship for the future community. In addition, the implication of education in the fourth industrial revolution, which will bring about a change to a super-intelligent and hyper-connected society, is that the role of education should be emphasized so that humans internalize their values as human beings. Character education should be established as a generalized and internalized consciousness with a concept established in the integration of the curriculum, and concrete practical strategies should be prepared. In conclusion, home economics education in the 4th industrial revolution era should play a leading role in the central role of character education, and intrinsic improvement of various human lives. The fourth industrial revolution will change not only what we do, or human mental and physical activities, but also who we are, or human identity. In the information society and digital society, it is important how quickly and accurately it is possible to acquire scattered knowledge. In the information society, it is required to learn how to use knowledge for human beings in rapid change. As such, the fourth industrial revolution seeks to lead the family, organization, and community positively by influencing the systems that shape our lives. Home economics education should take the lead in this role.

Effects of Information Overload to Information Privacy Protective Response in Internet of Things(Iot) (사물인터넷 시대의 개인정보과잉이 정보프라이버시 보호반응에 미치는 영향)

  • So, Won-Geun;Kim, Ha-Kyun
    • Management & Information Systems Review
    • /
    • v.36 no.1
    • /
    • pp.81-94
    • /
    • 2017
  • In the age of information overload such as Internet of Things(IoT), big data, and cloud computing, Data and informations are collected to processed regardless of the individual's will. The purpose of this paper presents a model related to personal information overlord, information privacy risk, information privacy concern (collection, control, awareness) and personal information privacy protective response. The results of this study is summarized as follows. First, personal information overload significantly affects information privacy risk. Second, personal information overload significantly affects information privacy concern(collection, control, awareness) Third, information privacy risk significantly affects collection and awareness among information privacy concern, but control does not significantly affects. This results shows that users are cognitively aware the information risk through collection and awareness of information. Users can not control information by self, control of information does not affects. Last, information privacy concern(collection and awareness significantly affect information privacy protective response, but information privacy concern (control) does not affect. Personal information users are concerned about information infringement due to excessive personal information, ability to protect private information became strong.

  • PDF

Consideration Points for application of KOMPSAT Data to Open Data Cube (다목적실용위성 자료의 오픈 데이터 큐브 적용을 위한 기본 고려사항)

  • LEE, Ki-Won;KIM, Kwang-Seob;LEE, Sun-Gu;KIM, Yong-Seung
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.1
    • /
    • pp.62-77
    • /
    • 2019
  • Open Data Cube(ODC) has been emerging and developing as the open source platform in the Committee on Earth Observation Satellites(CEOS) for the Global Earth Observation System of Systems(GEOSS) deployed by the Group on Earth Observations (GEO), ODC can be applied to the deployment of scalable and large amounts of free and open satellite images in a cloud computing environment, and ODC-based country or regional application services have been provided for public users on the high performance. This study first summarizes the status of ODC, and then presents concepts and some considering points for linking this platform with Korea Multi-Purpose Satellite (KOMPSAT) images. For the reference, the main contents of ODC with the Google Earth Engine(GEE) were compared. Application procedures of KOMPSAT satellite image to implement ODC service were explained, and an intermediate process related to data ingestion using actual data was demonstrated. As well, it suggested some practical schemes to utilize KOMPSAT satellite images for the ODC application service from the perspective of open data licensing. Policy and technical products for KOMPSAT images to ODC are expected to provide important references for GEOSS in GEO to apply new satellite images of other countries and organizations in the future.

Design and Evaluation of an Efficient Flushing Scheme for key-value Store (키-값 저장소를 위한 효율적인 로그 처리 기법 설계 및 평가)

  • Han, Hyuck
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.5
    • /
    • pp.187-193
    • /
    • 2019
  • Key-value storage engines are an essential component of growing demand in many computing environments, including social networks, online e-commerce, and cloud services. Recent key-value storage engines offer many features such as transaction, versioning, and replication. In a key-value storage engine, transaction processing provides atomicity through Write-Ahead-Logging (WAL), and a synchronous commit method for transaction processing flushes log data before the transaction completes. According to our observation, flushing log data to persistent storage is a performance bottleneck for key-value storage engines due to the significant overhead of fsync() calls despite the various optimizations of existing systems. In this article, we propose a group synchronization method to improve the performance of the key-value storage engine. We also design and implement a transaction scheduling method to perform other transactions while the system processes fsync() calls. The proposed method is an efficient way to reduce the number of frequent fsync() calls in the synchronous commit while supporting the same level of transaction provided by the existing system. We implement our scheme on the WiredTiger storage engine and our experimental results show that the proposed system improves the performance of key-value workloads over existing systems.

Real-Time GPU Task Monitoring and Node List Management Techniques for Container Deployment in a Cluster-Based Container Environment (클러스터 기반 컨테이너 환경에서 실시간 GPU 작업 모니터링 및 컨테이너 배치를 위한 노드 리스트 관리기법)

  • Jihun, Kang;Joon-Min, Gil
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.11
    • /
    • pp.381-394
    • /
    • 2022
  • Recently, due to the personalization and customization of data, Internet-based services have increased requirements for real-time processing, such as real-time AI inference and data analysis, which must be handled immediately according to the user's situation or requirement. Real-time tasks have a set deadline from the start of each task to the return of the results, and the guarantee of the deadline is directly linked to the quality of the services. However, traditional container systems are limited in operating real-time tasks because they do not provide the ability to allocate and manage deadlines for tasks executed in containers. In addition, tasks such as AI inference and data analysis basically utilize graphical processing units (GPU), which typically have performance impacts on each other because performance isolation is not provided between containers. And the resource usage of the node alone cannot determine the deadline guarantee rate of each container or whether to deploy a new real-time container. In this paper, we propose a monitoring technique for tracking and managing the execution status of deadlines and real-time GPU tasks in containers to support real-time processing of GPU tasks running on containers, and a node list management technique for container placement on appropriate nodes to ensure deadlines. Furthermore, we demonstrate from experiments that the proposed technique has a very small impact on the system.