• Title/Summary/Keyword: cloud computing systems

Search Result 602, Processing Time 0.028 seconds

Reference Model for the Service of Smart City Platform through Case Study (사례 연구를 통한 스마트 시티 플랫폼의 서비스를 위한 참조 모델)

  • Kim, Young Soo;Mun, Hyung-Jin
    • Journal of Digital Convergence
    • /
    • v.19 no.8
    • /
    • pp.241-247
    • /
    • 2021
  • As a way to solve the side effects of urban development, a smart city with information and communication technology converges in the city is being built. For this, a smart city platform should support the development and integration of smart city services. Therefore, the underlying technology and the functional and non-functional requirements that the smart platform must support were analyzed. As a result of this, we classified the Internet of Things, cloud computing, big data and cyber-physical systems into four categories as the underlying technologies supported by the smart city platform, and derived the functional and non-functional requirements that can be implemented and the reference model of the smart city platform. The reference model of the smart city platform is used for decision-making on investment in infrastructure technology and the development scope of services according to functional or non-functional requirements to solve specific city problems for city managers. It provides platform developers with guidelines to identify and determine the functional and non-functional requirements and implementation technologies of software platforms for building smart cities.

Centralized Machine Learning Versus Federated Averaging: A Comparison using MNIST Dataset

  • Peng, Sony;Yang, Yixuan;Mao, Makara;Park, Doo-Soon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.2
    • /
    • pp.742-756
    • /
    • 2022
  • A flood of information has occurred with the rise of the internet and digital devices in the fourth industrial revolution era. Every millisecond, massive amounts of structured and unstructured data are generated; smartphones, wearable devices, sensors, and self-driving cars are just a few examples of devices that currently generate massive amounts of data in our daily. Machine learning has been considered an approach to support and recognize patterns in data in many areas to provide a convenient way to other sectors, including the healthcare sector, government sector, banks, military sector, and more. However, the conventional machine learning model requires the data owner to upload their information to train the model in one central location to perform the model training. This classical model has caused data owners to worry about the risks of transferring private information because traditional machine learning is required to push their data to the cloud to process the model training. Furthermore, the training of machine learning and deep learning models requires massive computing resources. Thus, many researchers have jumped to a new model known as "Federated Learning". Federated learning is emerging to train Artificial Intelligence models over distributed clients, and it provides secure privacy information to the data owner. Hence, this paper implements Federated Averaging with a Deep Neural Network to classify the handwriting image and protect the sensitive data. Moreover, we compare the centralized machine learning model with federated averaging. The result shows the centralized machine learning model outperforms federated learning in terms of accuracy, but this classical model produces another risk, like privacy concern, due to the data being stored in the data center. The MNIST dataset was used in this experiment.

Performance Evaluation Using Neural Network Learning of Indoor Autonomous Vehicle Based on LiDAR (라이다 기반 실내 자율주행 차량에서 신경망 학습을 사용한 성능평가 )

  • Yonghun Kwon;Inbum Jung
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.3
    • /
    • pp.93-102
    • /
    • 2023
  • Data processing through the cloud causes many problems, such as latency and increased communication costs in the communication process. Therefore, many researchers study edge computing in the IoT, and autonomous driving is a representative application. In indoor self-driving, unlike outdoor, GPS and traffic information cannot be used, so the surrounding environment must be recognized using sensors. An efficient autonomous driving system is required because it is a mobile environment with resource constraints. This paper proposes a machine-learning method using neural networks for autonomous driving in an indoor environment. The neural network model predicts the most appropriate driving command for the current location based on the distance data measured by the LiDAR sensor. We designed six learning models to evaluate according to the number of input data of the proposed neural networks. In addition, we made an autonomous vehicle based on Raspberry Pi for driving and learning and an indoor driving track produced for collecting data and evaluation. Finally, we compared six neural network models in terms of accuracy, response time, and battery consumption, and the effect of the number of input data on performance was confirmed.

Ethics-Literacy Curriculum Modeling for Ethical Practice of 5G Information Professionals (5G 정보환경 정보전문가를 위한 윤리 리터러시 교육과정 모형연구)

  • Yoo, Sarah
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.33 no.1
    • /
    • pp.139-166
    • /
    • 2022
  • Ethical Issues increase when people engage in smart technological systems such as 5G, IoT, Cloud computing services and AI applications. Range of this research is comparison of various literacy concepts and its ethical issues in considering of 5G features and UX. 86 research papers and reports which have been published within the recent 5 years (2017-2022), relating the research subject, are investigated and analyzed. Two results show that various literacies can be grouped into four areas and that some of common issues among those areas as well as unique issues of each area are identified. Based on the literature analysis, an Operational Definition of Ethics-Literacy is presented and the model of ethics-literacy curriculum supporting ethical behavior of 5G information professionals is developed and suggested.

A Study on Vulnerability for Isolation Guarantee in Container-based Virtualization (컨테이너 기반 가상화에서 격리성 보장을 위한 취약성 고찰)

  • Dayun Yum;Dongcheon Shin
    • Convergence Security Journal
    • /
    • v.23 no.4
    • /
    • pp.23-32
    • /
    • 2023
  • Container-based virtualization has attracted many attentions as an alternative to virtual machine technology because it can be used more lightly by sharing the host operating system instead of individual guest operating systems. However, this advantage may owe some vulnerabilities. In particular, excessive resource use of some containers can affect other containers, which is known as the noisy neighbor problem, so that the important property of isolation may not be guaranteed. The noisy neighbor problem can threat the availability of containers, so we need to consider the noisy neighbor problem as a security problem. In this paper, we investigate vulnerabilities on guarantee of isolation incurred by the noisy neighbor problem in container-based virtualization. For this we first analyze the structure of container-based virtualization environments. Then we present vulnerabilities in 3 functional layers and general directions for solutions with limitations.

An Exploratory Study on Construction of Electronic Government as Platform with Customized Public Services : to Improve Administrative Aspects of Administrative Processes and Information Systems (맞춤형 공공서비스제공을 위한 플랫폼 전자정부 구축방안에 대한 탐색적 연구: 행정프로세스와 행정정보시스템 개선측면에서)

  • Lee, Sang-Yun;Chung, Myungju
    • Journal of Digital Convergence
    • /
    • v.14 no.1
    • /
    • pp.1-11
    • /
    • 2016
  • Currently Korean government is rushing the new electronic government system introduced as 'platform e-government' with big data and cloud computing technologies and systems, ultimately intending to provide the public institution services customized from the integrated counter or window for the heterogeneous resident services. In this regard, this study suggested how to design the new metadata information system in which mutual integration of information systems can take place, where heterogeneous services can be shared efficiently at the application and data unit, as a separate application that can provide a single one- stop service for residents' petition at the integrated level in the back-office based on the public data in possession of each of government ministries and related organizations. If this proposed system is implemented, the achievement of customized public service can be advanced one step forward in processing the petitions of the residents by organically connected link between 'Demand Chain' and 'Supply Chain' in the integrated window. In other words, it could be made possible through the unification of both the 'Supply Chain' performed in the office space of the officials at the back-office level and the 'Demand Chain' performed in the living space of the residents at the front-office level.

Implementation of Dynamic Situation Authentication System for Accessing Medical Information (의료정보 접근을 위한 동적상황인증시스템의 구현)

  • Ham, Gyu-Sung;Seo, Own-jeong;Jung, Hoill;Joo, Su-Chong
    • Journal of Internet Computing and Services
    • /
    • v.19 no.6
    • /
    • pp.31-40
    • /
    • 2018
  • With the development of IT technology recently, medical information systems are being constructed in an integrated u-health environment through cloud services, IoT technologies, and mobile applications. These kinds of medical information systems should provide the medical staff with authorities to access patients' medical information for emergency status treatments or therapeutic purposes. Therefore, in the medical information systems, the reliable and prompt authentication processes are necessary to access the biometric information and the medical information of the patients in charge of the medical staff. However, medical information systems are accessing with simple and static user authentication mechanism using only medical ID / PWD in the present system environment. For this reason, in this paper, we suggest a dynamic situation authentication mechanism that provides transparency of medical information access including various authentication factors considering patient's emergency status condition and dynamic situation authentication system supporting it. Our dynamic Situation Authentication is a combination of user authentication and mobile device authentication, which includes various authentication factor attributes such as emergency status, role of medical staff, their working hours, and their working positions and so forth. We designed and implemented a dynamic situation authentication system including emergency status decision, dynamic situation authentication, and authentication support DB construction. Finally, in order to verify the serviceability of the suggested dynamic situation authentication system, the medical staffs download the mobile application from the medical information server to the medical staff's own mobile device together with the dynamic situation authentication process and the permission to access medical information to the patient and showed access to medical information.

Performance Evaluation and Analysis on Single and Multi-Network Virtualization Systems with Virtio and SR-IOV (가상화 시스템에서 Virtio와 SR-IOV 적용에 대한 단일 및 다중 네트워크 성능 평가 및 분석)

  • Jaehak Lee;Jongbeom Lim;Heonchang Yu
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.2
    • /
    • pp.48-59
    • /
    • 2024
  • As functions that support virtualization on their own in hardware are developed, user applications having various workloads are operating efficiently in the virtualization system. SR-IOV is a virtualization support function that takes direct access to PCI devices, thus giving a high I/O performance by minimizing the need for hypervisor or operating system interventions. With SR-IOV, network I/O acceleration can be realized in virtualization systems that have relatively long I/O paths compared to bare-metal systems and frequent context switches between the user area and kernel area. To take performance advantages of SR-IOV, network resource management policies that can derive optimal network performance when SR-IOV is applied to an instance such as a virtual machine(VM) or container are being actively studied.This paper evaluates and analyzes the network performance of SR-IOV implementing I/O acceleration is compared with Virtio in terms of 1) network delay, 2) network throughput, 3) network fairness, 4) performance interference, and 5) multi-network. The contributions of this paper are as follows. First, the network I/O process of Virtio and SR-IOV was clearly explained in the virtualization system, and second, the evaluation results of the network performance of Virtio and SR-IOV were analyzed based on various performance metrics. Third, the system overhead and the possibility of optimization for the SR-IOV network in a virtualization system with high VM density were experimentally confirmed. The experimental results and analysis of the paper are expected to be referenced in the network resource management policy for virtualization systems that operate network-intensive services such as smart factories, connected cars, deep learning inference models, and crowdsourcing.

An Investigation on the Periodical Transition of News related to North Korea using Text Mining (텍스트마이닝을 활용한 북한 관련 뉴스의 기간별 변화과정 고찰)

  • Park, Chul-Soo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.63-88
    • /
    • 2019
  • The goal of this paper is to investigate changes in North Korea's domestic and foreign policies through automated text analysis over North Korea represented in South Korean mass media. Based on that data, we then analyze the status of text mining research, using a text mining technique to find the topics, methods, and trends of text mining research. We also investigate the characteristics and method of analysis of the text mining techniques, confirmed by analysis of the data. In this study, R program was used to apply the text mining technique. R program is free software for statistical computing and graphics. Also, Text mining methods allow to highlight the most frequently used keywords in a paragraph of texts. One can create a word cloud, also referred as text cloud or tag cloud. This study proposes a procedure to find meaningful tendencies based on a combination of word cloud, and co-occurrence networks. This study aims to more objectively explore the images of North Korea represented in South Korean newspapers by quantitatively reviewing the patterns of language use related to North Korea from 2016. 11. 1 to 2019. 5. 23 newspaper big data. In this study, we divided into three periods considering recent inter - Korean relations. Before January 1, 2018, it was set as a Before Phase of Peace Building. From January 1, 2018 to February 24, 2019, we have set up a Peace Building Phase. The New Year's message of Kim Jong-un and the Olympics of Pyeong Chang formed an atmosphere of peace on the Korean peninsula. After the Hanoi Pease summit, the third period was the silence of the relationship between North Korea and the United States. Therefore, it was called Depression Phase of Peace Building. This study analyzes news articles related to North Korea of the Korea Press Foundation database(www.bigkinds.or.kr) through text mining, to investigate characteristics of the Kim Jong-un regime's South Korea policy and unification discourse. The main results of this study show that trends in the North Korean national policy agenda can be discovered based on clustering and visualization algorithms. In particular, it examines the changes in the international circumstances, domestic conflicts, the living conditions of North Korea, the South's Aid project for the North, the conflicts of the two Koreas, North Korean nuclear issue, and the North Korean refugee problem through the co-occurrence word analysis. It also offers an analysis of South Korean mentality toward North Korea in terms of the semantic prosody. In the Before Phase of Peace Building, the results of the analysis showed the order of 'Missiles', 'North Korea Nuclear', 'Diplomacy', 'Unification', and ' South-North Korean'. The results of Peace Building Phase are extracted the order of 'Panmunjom', 'Unification', 'North Korea Nuclear', 'Diplomacy', and 'Military'. The results of Depression Phase of Peace Building derived the order of 'North Korea Nuclear', 'North and South Korea', 'Missile', 'State Department', and 'International'. There are 16 words adopted in all three periods. The order is as follows: 'missile', 'North Korea Nuclear', 'Diplomacy', 'Unification', 'North and South Korea', 'Military', 'Kaesong Industrial Complex', 'Defense', 'Sanctions', 'Denuclearization', 'Peace', 'Exchange and Cooperation', and 'South Korea'. We expect that the results of this study will contribute to analyze the trends of news content of North Korea associated with North Korea's provocations. And future research on North Korean trends will be conducted based on the results of this study. We will continue to study the model development for North Korea risk measurement that can anticipate and respond to North Korea's behavior in advance. We expect that the text mining analysis method and the scientific data analysis technique will be applied to North Korea and unification research field. Through these academic studies, I hope to see a lot of studies that make important contributions to the nation.

Research on text mining based malware analysis technology using string information (문자열 정보를 활용한 텍스트 마이닝 기반 악성코드 분석 기술 연구)

  • Ha, Ji-hee;Lee, Tae-jin
    • Journal of Internet Computing and Services
    • /
    • v.21 no.1
    • /
    • pp.45-55
    • /
    • 2020
  • Due to the development of information and communication technology, the number of new / variant malicious codes is increasing rapidly every year, and various types of malicious codes are spreading due to the development of Internet of things and cloud computing technology. In this paper, we propose a malware analysis method based on string information that can be used regardless of operating system environment and represents library call information related to malicious behavior. Attackers can easily create malware using existing code or by using automated authoring tools, and the generated malware operates in a similar way to existing malware. Since most of the strings that can be extracted from malicious code are composed of information closely related to malicious behavior, it is processed by weighting data features using text mining based method to extract them as effective features for malware analysis. Based on the processed data, a model is constructed using various machine learning algorithms to perform experiments on detection of malicious status and classification of malicious groups. Data has been compared and verified against all files used on Windows and Linux operating systems. The accuracy of malicious detection is about 93.5%, the accuracy of group classification is about 90%. The proposed technique has a wide range of applications because it is relatively simple, fast, and operating system independent as a single model because it is not necessary to build a model for each group when classifying malicious groups. In addition, since the string information is extracted through static analysis, it can be processed faster than the analysis method that directly executes the code.