• Title/Summary/Keyword: cloud computing systems

Search Result 602, Processing Time 0.034 seconds

A Trend to Distributed File Systems for Cloud Computing (클라우드 컴퓨팅을 위한 분산 파일 시스템 기술 동향)

  • Min, Y.S.;Jin, K.S.;Kim, H.Y.;Kim, Y.K.
    • Electronics and Telecommunications Trends
    • /
    • v.24 no.4
    • /
    • pp.55-68
    • /
    • 2009
  • 최근 클라우드 컴퓨팅 시장에 진출했거나 진출을 선언한 글로벌 IT 기업들을 살펴보면 이미 보유하고 있는 기반 기술들을 활용하거나 상호 협력을 통해 다양한 클라우드 서비스들을 제공함으로써 급격하게 성장하고 있는 클라우드 컴퓨팅 시장에서 자신들의 영역을 지속적으로 확장해 나가고 있다. 분산 파일 시스템은 데이터의 저장과 관리뿐만 아니라 상위 계층 서비스가 요구하는 충분한 성능과 안정성을 보장해주기 위한 클라우드 컴퓨팅의 핵심 기술 중의 하나이다. 본 고에서는 클라우드 컴퓨팅을 위해 분산 파일 시스템이 갖추어야 할 사항들과 클라우드 컴퓨팅에서 활용 가능한 분산 파일 시스템들을 소개하고 현재 클라우드 컴퓨팅 시장에서 활용되고 있는 분산 파일 시스템의 동향을 살펴보고자 한다.

IoT-based Digital Life Care Industry Trends

  • Kim, Young-Hak
    • International journal of advanced smart convergence
    • /
    • v.8 no.3
    • /
    • pp.87-94
    • /
    • 2019
  • IoT-based services are being released in accordance with the aging population and the demand for well-being pursuit needs. In addition to medical device companies, companies with ideas ranging from global ICT companies to startup companies are accelerating their market entry. The areas where these services are most commonly applied are health/medical, life/safety, city/energy, automotive and transportation. Furthermore, by expanding IoT technology convergence into the area of life care services, it contributes greatly to the development of service models in the public sector. It also provides an important opportunity for IoT-related companies to open up new markets. By addressing the problems of life care services that are still insufficient. We are providing opportunities to pursue the common interests of both users and workers and improve the quality of life. In order to establish IoT-based digital life care services, it is necessary to develop convergence technologies using cloud computing systems, big data analytics, medical information, and smart healthcare infrastructure.

Merging Files on Distribute File Systems for Cloud Computing (클라우드 컴퓨팅을 위한 분산 파일 시스템에서의 파일 병합 기법)

  • Lee, Dongwoo;Kim, Junghan;Eom, Young Ik
    • Annual Conference of KIPS
    • /
    • 2009.11a
    • /
    • pp.109-110
    • /
    • 2009
  • 최근 IT산업의 화두인 클라우드 컴퓨팅에서, HDFS는 널리 사용되고 있는 분산 파일 시스템이다. HDFS는 분산된 데이터의 저장과 검색의 장점이 있는 반면, 대용량 파일처리를 목적으로 설계되었기 때문에 실시간 파일처리와 저용량 데이터 처리에 비효율적이다. 본 논문에서는 이러한 문제를 해결하기 위해 HDFS의 파일 처리 과정을 개선하여 저용량 파일 처리를 향상시키는 방법을 제안한다. 본 기법은 데이터 블록에 저용량 파일들을 병합함으로써 데이터 처리의 효율성을 높이는 결과를 보였다.

Deep Reinforcement Learning-Based Edge Caching in Heterogeneous Networks

  • Yoonjeong, Choi; Yujin, Lim
    • Journal of Information Processing Systems
    • /
    • v.18 no.6
    • /
    • pp.803-812
    • /
    • 2022
  • With the increasing number of mobile device users worldwide, utilizing mobile edge computing (MEC) devices close to users for content caching can reduce transmission latency than receiving content from a server or cloud. However, because MEC has limited storage capacity, it is necessary to determine the content types and sizes to be cached. In this study, we investigate a caching strategy that increases the hit ratio from small base stations (SBSs) for mobile users in a heterogeneous network consisting of one macro base station (MBS) and multiple SBSs. If there are several SBSs that users can access, the hit ratio can be improved by reducing duplicate content and increasing the diversity of content in SBSs. We propose a Deep Q-Network (DQN)-based caching strategy that considers time-varying content popularity and content redundancy in multiple SBSs. Content is stored in the SBS in a divided form using maximum distance separable (MDS) codes to enhance the diversity of the content. Experiments in various environments show that the proposed caching strategy outperforms the other methods in terms of hit ratio.

Behavioral Analysis Zero-Trust Architecture Relying on Adaptive Multifactor and Threat Determination

  • Chit-Jie Chew;Po-Yao Wang;Jung-San Lee
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.9
    • /
    • pp.2529-2549
    • /
    • 2023
  • For effectively lowering down the risk of cyber threating, the zero-trust architecture (ZTA) has been gradually deployed to the fields of smart city, Internet of Things, and cloud computing. The main concept of ZTA is to maintain a distrustful attitude towards all devices, identities, and communication requests, which only offering the minimum access and validity. Unfortunately, adopting the most secure and complex multifactor authentication has brought enterprise and employee a troublesome and unfriendly burden. Thus, authors aim to incorporate machine learning technology to build an employee behavior analysis ZTA. The new framework is characterized by the ability of adjusting the difficulty of identity verification through the user behavioral patterns and the risk degree of the resource. In particular, three key factors, including one-time password, face feature, and authorization code, have been applied to design the adaptive multifactor continuous authentication system. Simulations have demonstrated that the new work can eliminate the necessity of maintaining a heavy authentication and ensure an employee-friendly experience.

Development of Soil Erosion Analysis Systems Based on Cloud and HyGIS (클라우드 및 HyGIS기반 토양유실분석 시스템 개발)

  • Kim, Joo-Hun;Kim, Kyung-Tak;Lee, Jin-Won
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.4
    • /
    • pp.63-76
    • /
    • 2011
  • This study purposes to develop a model to analyze soil loss in estimating prior disaster influence. The model of analyzing soil loss develops the soil loss analysis system on the basis of Internet by introducing cloud computing system, and also develops a standalone type in connection with HyGIS. The soil loss analysis system is developed to draw a distribution chart without requiring a S/W license as well as without preparing basic data such as DEM, soil map and land cover map. Besides, it can help users to draw a soil loss distribution chart by applying various factors like direct rain factors. The tools of Soil Loss Anaysis Model in connection with HyGiS are developed as add-on type of GMMap2009 in GEOMania, and also are developed to draw Soil Loss Hazard Map suggested by OECD. As a result of using both models, they are developed very conveniently to analyze soil loss. Hereafter, these models will be able to be improved continuously through researches to analyze sediment a watershed outlet and to calculate R value using data of many rain stations.

A Study on the Metadata Schema for the Collection of Sensor Data in Weapon Systems (무기체계 CBM+ 적용 및 확대를 위한 무기체계 센서데이터 수집용 메타데이터 스키마 연구)

  • Jinyoung Kim;Hyoung-seop Shim;Jiseong Son;Yun-Young Hwang
    • Journal of Internet Computing and Services
    • /
    • v.24 no.6
    • /
    • pp.161-169
    • /
    • 2023
  • Due to the Fourth Industrial Revolution, innovation in various technologies such as artificial intelligence (AI), big data (Big Data), and cloud (Cloud) is accelerating, and data is considered an important asset. With the innovation of these technologies, various efforts are being made to lead technological innovation in the field of defense science and technology. In Korea, the government also announced the "Defense Innovation 4.0 Plan," which consists of five key points and 16 tasks to foster advanced science and technology forces in March 2023. The plan also includes the establishment of a Condition-Based Maintenance system (CBM+) to improve the operability and availability of weapons systems and reduce defense costs. Condition Based Maintenance (CBM) aims to secure the reliability and availability of the weapon system and analyze changes in equipment's state information to identify them as signs of failure and defects, and CBM+ is a concept that adds Remaining Useful Life prediction technology to the existing CBM concept [1]. In order to establish a CBM+ system for the weapon system, sensors are installed and sensor data are required to obtain condition information of the weapon system. In this paper, we propose a sensor data metadata schema to efficiently and effectively manage sensor data collected from sensors installed in various weapons systems.

A Prototype Implementation of Component Modules for Web-based SAR Data Processing System (웹 기반 SAR 자료처리 시스템 구성모듈 시험구현)

  • Kang, Sang-Goo;Lee, Ki-Won
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.1
    • /
    • pp.29-38
    • /
    • 2012
  • Nowadays, most remote sensing image processing systems are on client-based ones. But in the view of information technology, a web-based system is predominant, being closely related to cloud computing and services. The web-based system in remote sensing is somewhat limited in the area of data sharing or dissemination, but it is necessary to extend. This study is to implement a web-based system and its component modules for SAR data processing. First, the previous cases dealt with both web computing and SAR information are investigated. InSAR information processing and concerned modules for a web-based system among SAR research domains are the main points in this work. It is expected that this approach contributes to the first attempt to link web computing technology such as HTML5 and satellite image processing.

Malware Behavior Analysis based on Mobile Virtualization (모바일 가상화기반의 악성코드 행위분석)

  • Kim, Jang-Il;Lee, Hee-Seok;Jung, Yong-Gyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.2
    • /
    • pp.1-7
    • /
    • 2015
  • As recent smartphone is used around the world, all of the subscribers of the mobile communication is up to 47.7% about 24 million people. Smartphone has a vulnerability to security, and security-related incidents are increased in damage with the smartphone. However, precautions have been made, rather than analysis of the infection of most of the damage occurs after the damaged except for the case of the expert by way of conventional post-countermeasure. In this paper, we implement a mobile-based malware analysis systems apply a virtualization technology. It is designed to analyze the behavior through it. Virtualization is a technique that provides a logical resources to the guest by abstracting the physical characteristics of computing resources. The virtualization technology can improve the efficiency of resources by integrating with cloud computing services to servers, networks, storage, and computing resources to provide a flexible. In addition, we propose a system that can be prepared in advance to buy a security from a user perspective.

Energy-Aware Data-Preprocessing Scheme for Efficient Audio Deep Learning in Solar-Powered IoT Edge Computing Environments (태양 에너지 수집형 IoT 엣지 컴퓨팅 환경에서 효율적인 오디오 딥러닝을 위한 에너지 적응형 데이터 전처리 기법)

  • Yeontae Yoo;Dong Kun Noh
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.4
    • /
    • pp.159-164
    • /
    • 2023
  • Solar energy harvesting IoT devices prioritize maximizing the utilization of collected energy due to the periodic recharging nature of solar energy, rather than minimizing energy consumption. Meanwhile, research on edge AI, which performs machine learning near the data source instead of the cloud, is actively conducted for reasons such as data confidentiality and privacy, response time, and cost. One such research area involves performing various audio AI applications using audio data collected from multiple IoT devices in an IoT edge computing environment. However, in most studies, IoT devices only perform sensing data transmission to the edge server, and all processes, including data preprocessing, are performed on the edge server. In this case, it not only leads to overload issues on the edge server but also causes network congestion by transmitting unnecessary data for learning. On the other way, if data preprocessing is delegated to each IoT device to address this issue, it leads to another problem of increased blackout time due to energy shortages in the devices. In this paper, we aim to alleviate the problem of increased blackout time in devices while mitigating issues in server-centric edge AI environments by determining where the data preprocessed based on the energy state of each IoT device. In the proposed method, IoT devices only perform the preprocessing process, which includes sound discrimination and noise removal, and transmit to the server if there is more energy available than the energy threshold required for the basic operation of the device.