• Title/Summary/Keyword: cloud computing systems

Search Result 602, Processing Time 0.027 seconds

A Study on the Linux System Load and Resource for Cloud Computing Infrastructure Development (클라우드 컴퓨팅 인프라 구축을 위한 시스템 부하 및 자원에 관한 연구)

  • Jung, Sung-Jae;Bae, Yu-Mi;Jang, Rae-Young;Sung, Kyung;Soh, Woo-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.440-443
    • /
    • 2011
  • While Cloud Computing catch attention, system configuration using Server Virtualization as a core technology gains popularity. Thus analyzing existing systems and utilizing resources using server virtualization techniques are spotlighted. This paper presents a solid foundation for utilizing the system idle resources and constructing the cloud computing infrastructure by analyzing means and types of the system load and further analyzing the relationship between CPU resources and loads based on Linux system.

  • PDF

Service Scheduling in Cloud Computing based on Queuing Game Model

  • Lin, Fuhong;Zhou, Xianwei;Huang, Daochao;Song, Wei;Han, Dongsheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.5
    • /
    • pp.1554-1566
    • /
    • 2014
  • Cloud Computing allows application providers seamlessly scaling their services and enables users scaling their usage according to their needs. In this paper, using queuing game model, we present service scheduling schemes which are used in software as a service (SaaS). The object is maximizing the Cloud Computing platform's (CCP's) payoff via controlling the service requests whether to join or balk, and controlling the value of CCP's admission fee. Firstly, we treat the CCP as one virtual machine (VM) and analyze the optimal queue length with a fixed admission fee distribution. If the position number of a new service request is bigger than the optimal queue length, it balks. Otherwise, it joins in. Under this scheme, the CCP's payoff can be maximized. Secondly, we extend this achievement to the multiple VMs situation. A big difference between single VM and multiple VMs is that the latter one needs to decide which VM the service requests turn to for service. We use a corresponding algorithm solve it. Simulation results demonstrate the good performance of our schemes.

A Speech Homomorphic Encryption Scheme with Less Data Expansion in Cloud Computing

  • Shi, Canghong;Wang, Hongxia;Hu, Yi;Qian, Qing;Zhao, Hong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2588-2609
    • /
    • 2019
  • Speech homomorphic encryption has become one of the key components in secure speech storing in the public cloud computing. The major problem of speech homomorphic encryption is the huge data expansion of speech cipher-text. To address the issue, this paper presents a speech homomorphic encryption scheme with less data expansion, which is a probabilistic statistics and addition homomorphic cryptosystem. In the proposed scheme, the original digital speech with some random numbers selected is firstly grouped to form a series of speech matrix. Then, a proposed matrix encryption method is employed to encrypt that speech matrix. After that, mutual information in sample speech cipher-texts is reduced to limit the data expansion. Performance analysis and experimental results show that the proposed scheme is addition homomorphic, and it not only resists statistical analysis attacks but also eliminates some signal characteristics of original speech. In addition, comparing with Paillier homomorphic cryptosystem, the proposed scheme has less data expansion and lower computational complexity. Furthermore, the time consumption of the proposed scheme is almost the same on the smartphone and the PC. Thus, the proposed scheme is extremely suitable for secure speech storing in public cloud computing.

Analysis of Optimal Energy Consumption for Task Migration in Clouds (클라우드에서 태스크 이주를 위한 최적의 에너지 소비 임계값 분석)

  • Choi, HeeSeok;Choi, SookKyong;Park, JiSu;Suh, Teaweon;Yu, Heonchang
    • Annual Conference of KIPS
    • /
    • 2013.11a
    • /
    • pp.131-134
    • /
    • 2013
  • 최근 클라우드 컴퓨팅의 발전과 상업적인 성공과 함께 클라우드 자원의 이용률을 최대로 유지하면서 에너지를 효율적으로 사용하기 위한 연구에 대한 관심이 커지고 있다. 자원의 사용률이 최대로 높아지게 되면 에너지 소비량이 급격하게 증가하여 많은 에너지를 사용하게 되므로 자원의 사용율과 에너지 사용은 트레이드오프 관계를 가지게 된다. 따라서 본 논문에서는 자원의 최대 사용 및 효율적인 에너지 사용을 위해 에너지 소비가 최적이 되는 자원 이용률의 임계값을 찾기 위한 연구를 수행하였다. 실험을 위해 자원 중 가장 많은 에너지를 소비하는 CPU를 이용하였고, 전력 측정을 위해 KEM2500 전력계와 ThrottleStop_500 프로그램을 사용하였다. 실험 결과 CPU 사용률이 약 90%일 때 에너지 사용량이 급격하게 증가하였으며, 기존의 평균 자원 이용률과 비교했을 때 12.3% 정도의 전기량이 더 소모됨을 확인하였다. 따라서 클라우드 컴퓨팅에서 CPU 자원의 이용률이 90%일 때 에너지가 최적이라고 할 수 있다.

Multi-factor Evolution for Large-scale Multi-objective Cloud Task Scheduling

  • Tianhao Zhao;Linjie Wu;Di Wu;Jianwei Li;Zhihua Cui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.4
    • /
    • pp.1100-1122
    • /
    • 2023
  • Scheduling user-submitted cloud tasks to the appropriate virtual machine (VM) in cloud computing is critical for cloud providers. However, as the demand for cloud resources from user tasks continues to grow, current evolutionary algorithms (EAs) cannot satisfy the optimal solution of large-scale cloud task scheduling problems. In this paper, we first construct a large- scale multi-objective cloud task problem considering the time and cost functions. Second, a multi-objective optimization algorithm based on multi-factor optimization (MFO) is proposed to solve the established problem. This algorithm solves by decomposing the large-scale optimization problem into multiple optimization subproblems. This reduces the computational burden of the algorithm. Later, the introduction of the MFO strategy provides the algorithm with a parallel evolutionary paradigm for multiple subpopulations of implicit knowledge transfer. Finally, simulation experiments and comparisons are performed on a large-scale task scheduling test set on the CloudSim platform. Experimental results show that our algorithm can obtain the best scheduling solution while maintaining good results of the objective function compared with other optimization algorithms.

Software Architecture of the Grid for implementing the Cloud Computing of the High Availability (고가용성 클라우드 컴퓨팅 구축을 위한 그리드 소프트웨어 아키텍처)

  • Lee, Byoung-Yup;Park, Jun-Ho;Yoo, Jae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.2
    • /
    • pp.19-29
    • /
    • 2012
  • Currently, cloud computing technology is being supplied in various service forms and it is becoming a ground breaking service which provides usage of storage service, data and software while user is not involved in technical background such as physical location of service or system environment. cloud computing technology has advantages that it can use easily as many IT resources as it wants freely regardless of hardware issues required by a variety of systems and service level required by infrastructure. Also, since it has a strength that it can choose usage of resource about business model due to various internet-based technologies, provisioning technology and virtualization technology are being paid attention as main technologies. These technologies are ones of important technology elements which help web-based users approach freely and install according to user environment. Therefore, this thesis introduces software-related technologies and architectures in an aspect of grid for building up high availability cloud computing environment by analysis about cloud computing technology trend.

Efficient Update Method for Cloud Storage System

  • Khill, Ki-Jeong;Lee, Sang-Min;Kim, Young-Kyun;Shin, Jaeryong;Song, Seokil
    • International Journal of Contents
    • /
    • v.10 no.1
    • /
    • pp.62-67
    • /
    • 2014
  • Usually, cloud storage systems are developed based on DFS (Distributed File System) for scalability and reliability reasons. DFSs are designed to improve throughput than IO response time, and therefore, they are appropriate for batch processing jobs. Recently, cloud storage systems have been used for update intensive applications such as OLTP and so on. However, in DFSs, in-place update operations are not carefully considered. Therefore, when updates are frequent, I/O performance of DFSs are degraded significantly. DFSs with RAID techniques have been proposed to improve their performance and reliability. Their performance degradation caused by frequent update operations can be more significant. In this paper, we propose an in-place update method for DFS RAID exploiting a differential logging technique. The proposed method reduces the I/O costs, network traffic and XOR operation costs for RAID. We demonstrate the efficiency of our proposed in-place update method through various experiments.

A key-insulated CP-ABE with key exposure accountability for secure data sharing in the cloud

  • Hong, Hanshu;Sun, Zhixin;Liu, Ximeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.5
    • /
    • pp.2394-2406
    • /
    • 2016
  • ABE has become an effective tool for data protection in cloud computing. However, since users possessing the same attributes share the same private keys, there exist some malicious users exposing their private keys deliberately for illegal data sharing without being detected, which will threaten the security of the cloud system. Such issues remain in many current ABE schemes since the private keys are rarely associated with any user specific identifiers. In order to achieve user accountability as well as provide key exposure protection, in this paper, we propose a key-insulated ciphertext policy attribute based encryption with key exposure accountability (KI-CPABE-KEA). In our scheme, data receiver can decrypt the ciphertext if the attributes he owns match with the self-centric policy which is set by the data owner. Besides, a unique identifier is embedded into each user's private key. If a malicious user exposes his private key for illegal data sharing, his identity can be exactly pinpointed by system manager. The key-insulation mechanism guarantees forward and backward security when key exposure happens as well as provides efficient key updating for users in the cloud system. The higher efficiency with proved security make our KI-CPABE-KEA more appropriate for secure data sharing in cloud computing.

RAS: Request Assignment Simulator for Cloud-Based Applications

  • Rajan, R. Arokia Paul;Francis, F. Sagayaraj
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.6
    • /
    • pp.2035-2049
    • /
    • 2015
  • Applications deployed in cloud receive a huge volume of requests from geographically distributed users whose satisfaction with the cloud service is directly proportional to the efficiency with which the requests are handled. Assignment of user requests based on appropriate load balancing principles significantly improves the performance of such cloud-based applications. To study the behavior of such systems, there is a need for simulation tools that will help the designer to set a test bed and evaluate the performance of the system by experimenting with different load balancing principles. In this paper, a novel architecture for cloud called Request Assignment Simulator (RAS) is proposed. It is a customizable, visual tool that simulates the request assignment process based on load balancing principles with a set of parameters that impact resource utilization. This simulator will help to ascertain the best possible resource allocation technique by facilitating the designer to apply and test different load balancing principles for a given scenario.

Honey Bee Based Load Balancing in Cloud Computing

  • Hashem, Walaa;Nashaat, Heba;Rizk, Rawya
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.12
    • /
    • pp.5694-5711
    • /
    • 2017
  • The technology of cloud computing is growing very quickly, thus it is required to manage the process of resource allocation. In this paper, load balancing algorithm based on honey bee behavior (LBA_HB) is proposed. Its main goal is distribute workload of multiple network links in the way that avoid underutilization and over utilization of the resources. This can be achieved by allocating the incoming task to a virtual machine (VM) which meets two conditions; number of tasks currently processing by this VM is less than number of tasks currently processing by other VMs and the deviation of this VM processing time from average processing time of all VMs is less than a threshold value. The proposed algorithm is compared with different scheduling algorithms; honey bee, ant colony, modified throttled and round robin algorithms. The results of experiments show the efficiency of the proposed algorithm in terms of execution time, response time, makespan, standard deviation of load, and degree of imbalance.