• Title/Summary/Keyword: cloud computing systems

Search Result 602, Processing Time 0.029 seconds

Challenges and Issues of Resource Allocation Techniques in Cloud Computing

  • Abid, Adnan;Manzoor, Muhammad Faraz;Farooq, Muhammad Shoaib;Farooq, Uzma;Hussain, Muzammil
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.7
    • /
    • pp.2815-2839
    • /
    • 2020
  • In a cloud computing paradigm, allocation of various virtualized ICT resources is a complex problem due to the presence of heterogeneous application (MapReduce, content delivery and networks web applications) workloads having contentious allocation requirements in terms of ICT resource capacities (resource utilization, execution time, response time, etc.). This task of resource allocation becomes more challenging due to finite available resources and increasing consumer demands. Therefore, many unique models and techniques have been proposed to allocate resources efficiently. However, there is no published research available in this domain that clearly address this research problem and provides research taxonomy for classification of resource allocation techniques including strategic, target resources, optimization, scheduling and power. Hence, the main aim of this paper is to identify open challenges faced by the cloud service provider related to allocation of resource such as servers, storage and networks in cloud computing. More than 70 articles, between year 2007 and 2020, related to resource allocation in cloud computing have been shortlisted through a structured mechanism and are reviewed under clearly defined objectives. Lastly, the evolution of research in resource allocation techniques has also been discussed along with salient future directions in this area.

An improved Multi-server Authentication Scheme for Distributed Mobile Cloud Computing Services

  • Irshad, Azeem;Sher, Muhammad;Ahmad, Hafiz Farooq;Alzahrani, Bander A.;Chaudhry, Shehzad Ashraf;Kumar, Rahul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.12
    • /
    • pp.5529-5552
    • /
    • 2016
  • Mobile cloud computing (MCC) has revolutionized the way in which the services can be obtained from the cloud service providers. Manifold increase in the number of mobile devices and subscribers in MCC has further enhanced the need of an efficient and robust authentication solution. Earlier, the subscribers could get cloud-computing services from the cloud service providers only after having consulted the trusted third party. Recently, Tsai and Lo has proposed a multi-server authenticated key agreement solution for MCC based on bilinear pairing, to eliminate the trusted third party for mutual authentication. The scheme has been novel as far as the minimization of trusted party involvement in authenticating the user and service provider, is concerned. However, the Tsai and Lo scheme has been found vulnerable to server spoofing attack (misrepresentation attack), de-synchronization attack and denial-of-service attack, which renders the scheme unsuitable for practical deployment in different wireless mobile access networks. Therefore, we have proposed an improved model based on bilinear pairing, countering the identified threats posed to Tsai and Lo scheme. Besides, the proposed work also demonstrates performance evaluation and formal security analysis.

Load Balancing Approach to Enhance the Performance in Cloud Computing

  • Rassan, Iehab AL;Alarif, Noof
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.2
    • /
    • pp.158-170
    • /
    • 2021
  • Virtualization technologies are being adopted and broadly utilized in many fields and at different levels. In cloud computing, achieving load balancing across large distributed virtual machines is considered a complex optimization problem with an essential importance in cloud computing systems and data centers as the overloading or underloading of tasks on VMs may cause multiple issues in the cloud system like longer execution time, machine failure, high power consumption, etc. Therefore, load balancing mechanism is an important aspect in cloud computing that assist in overcoming different performance issues. In this research, we propose a new approach that combines the advantages of different task allocation algorithms like Round robin algorithm, and Random allocation with different threshold techniques like the VM utilization and the number of allocation counts using least connection mechanism. We performed extensive simulations and experiments that augment different scheduling policies to overcome the resource utilization problem without compromising other performance measures like makespan and execution time of the tasks. The proposed system provided better results compared to the original round robin as it takes into consideration the dynamic state of the system.

A Novel Smart Contract based Optimized Cloud Selection Framework for Efficient Multi-Party Computation

  • Haotian Chen;Abir EL Azzaoui;Sekione Reward Jeremiah;Jong Hyuk Park
    • Journal of Information Processing Systems
    • /
    • v.19 no.2
    • /
    • pp.240-257
    • /
    • 2023
  • The industrial Internet of Things (IIoT) is characterized by intelligent connection, real-time data processing, collaborative monitoring, and automatic information processing. The heterogeneous IIoT devices require a high data rate, high reliability, high coverage, and low delay, thus posing a significant challenge to information security. High-performance edge and cloud servers are a good backup solution for IIoT devices with limited capabilities. However, privacy leakage and network attack cases may occur in heterogeneous IIoT environments. Cloud-based multi-party computing is a reliable privacy-protecting technology that encourages multiparty participation in joint computing without privacy disclosure. However, the default cloud selection method does not meet the heterogeneous IIoT requirements. The server can be dishonest, significantly increasing the probability of multi-party computation failure or inefficiency. This paper proposes a blockchain and smart contract-based optimized cloud node selection framework. Different participants choose the best server that meets their performance demands, considering the communication delay. Smart contracts provide a progressive request mechanism to increase participation. The simulation results show that our framework improves overall multi-party computing efficiency by up to 44.73%.

Performance Optimization of Numerical Ocean Modeling on Cloud Systems (클라우드 시스템에서 해양수치모델 성능 최적화)

  • JUNG, KWANGWOOG;CHO, YANG-KI;TAK, YONG-JIN
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.27 no.3
    • /
    • pp.127-143
    • /
    • 2022
  • Recently, many attempts to run numerical ocean models in cloud computing environments have been tried actively. A cloud computing environment can be an effective means to implement numerical ocean models requiring a large-scale resource or quickly preparing modeling environment for global or large-scale grids. Many commercial and private cloud computing systems provide technologies such as virtualization, high-performance CPUs and instances, ether-net based high-performance-networking, and remote direct memory access for High Performance Computing (HPC). These new features facilitate ocean modeling experimentation on commercial cloud computing systems. Many scientists and engineers expect cloud computing to become mainstream in the near future. Analysis of the performance and features of commercial cloud services for numerical modeling is essential in order to select appropriate systems as this can help to minimize execution time and the amount of resources utilized. The effect of cache memory is large in the processing structure of the ocean numerical model, which processes input/output of data in a multidimensional array structure, and the speed of the network is important due to the communication characteristics through which a large amount of data moves. In this study, the performance of the Regional Ocean Modeling System (ROMS), the High Performance Linpack (HPL) benchmarking software package, and STREAM, the memory benchmark were evaluated and compared on commercial cloud systems to provide information for the transition of other ocean models into cloud computing. Through analysis of actual performance data and configuration settings obtained from virtualization-based commercial clouds, we evaluated the efficiency of the computer resources for the various model grid sizes in the virtualization-based cloud systems. We found that cache hierarchy and capacity are crucial in the performance of ROMS using huge memory. The memory latency time is also important in the performance. Increasing the number of cores to reduce the running time for numerical modeling is more effective with large grid sizes than with small grid sizes. Our analysis results will be helpful as a reference for constructing the best computing system in the cloud to minimize time and cost for numerical ocean modeling.

A Workflow Scheduling Technique Using Genetic Algorithm in Spot Instance-Based Cloud

  • Jung, Daeyong;Suh, Taeweon;Yu, Heonchang;Gil, JoonMin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.9
    • /
    • pp.3126-3145
    • /
    • 2014
  • Cloud computing is a computing paradigm in which users can rent computing resources from service providers according to their requirements. A spot instance in cloud computing helps a user to obtain resources at a lower cost. However, a crucial weakness of spot instances is that the resources can be unreliable anytime due to the fluctuation of instance prices, resulting in increasing the failure time of users' job. In this paper, we propose a Genetic Algorithm (GA)-based workflow scheduling scheme that can find the optimal task size of each instance in a spot instance-based cloud computing environment without increasing users' budgets. Our scheme reduces total task execution time even if an out-of-bid situation occurs in an instance. The simulation results, based on a before-and-after GA comparison, reveal that our scheme achieves performance improvements in terms of reducing the task execution time on average by 7.06%. Additionally, the cost in our scheme is similar to that when GA is not applied. Therefore, our scheme can achieve better performance than the existing scheme, by optimizing the task size allocated to each available instance throughout the evolutionary process of GA.

Big IoT Healthcare Data Analytics Framework Based on Fog and Cloud Computing

  • Alshammari, Hamoud;El-Ghany, Sameh Abd;Shehab, Abdulaziz
    • Journal of Information Processing Systems
    • /
    • v.16 no.6
    • /
    • pp.1238-1249
    • /
    • 2020
  • Throughout the world, aging populations and doctor shortages have helped drive the increasing demand for smart healthcare systems. Recently, these systems have benefited from the evolution of the Internet of Things (IoT), big data, and machine learning. However, these advances result in the generation of large amounts of data, making healthcare data analysis a major issue. These data have a number of complex properties such as high-dimensionality, irregularity, and sparsity, which makes efficient processing difficult to implement. These challenges are met by big data analytics. In this paper, we propose an innovative analytic framework for big healthcare data that are collected either from IoT wearable devices or from archived patient medical images. The proposed method would efficiently address the data heterogeneity problem using middleware between heterogeneous data sources and MapReduce Hadoop clusters. Furthermore, the proposed framework enables the use of both fog computing and cloud platforms to handle the problems faced through online and offline data processing, data storage, and data classification. Additionally, it guarantees robust and secure knowledge of patient medical data.

Towards Smart Card Based Mutual Authentication Schemes in Cloud Computing

  • Li, Haoxing;Li, Fenghua;Song, Chenggen;Yan, Yalong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.7
    • /
    • pp.2719-2735
    • /
    • 2015
  • In the cloud environment, users pay more attentions to their data security since all of them are stored in the cloud server. Researchers have proposed many mutual authentication schemes for the access control of the cloud server by using the smart card to protect the sensitive data. However, few of them can resist from the smart card lost problem and provide both of the forward security and the backward security. In this paper, we propose a novel authentication scheme for cloud computing which can address these problems and also provide the anonymity for the user. The trick we use is using the password, the smart card and the public key technique to protect the processes of the user's authentication and key exchange. Under the Elliptic Curve Diffie-Hellman (ECDH) assumption, it is provably secure in the random oracle model. Compared with the existing smart card based authentication schemes in the cloud computing, the proposed scheme can provide better security degree.

QSDB: An Encrypted Database Model for Privacy-Preserving in Cloud Computing

  • Liu, Guoxiu;Yang, Geng;Wang, Haiwei;Dai, Hua;Zhou, Qiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.7
    • /
    • pp.3375-3400
    • /
    • 2018
  • With the advent of database-as-a-service (DAAS) and cloud computing, more and more data owners are motivated to outsource their data to cloud database in consideration of convenience and cost. However, it has become a challenging work to provide security to database as service model in cloud computing, because adversaries may try to gain access to sensitive data, and curious or malicious administrators may capture and leak data. In order to realize privacy preservation, sensitive data should be encrypted before outsourcing. In this paper, we present a secure and practical system over encrypted cloud data, called QSDB (queryable and secure database), which simultaneously supports SQL query operations. The proposed system can store and process the floating point numbers without compromising the security of data. To balance tradeoff between data privacy protection and query processing efficiency, QSDB utilizes three different encryption models to encrypt data. Our strategy is to process as much queries as possible at the cloud server. Encryption of queries and decryption of encrypted queries results are performed at client. Experiments on the real-world data sets were conducted to demonstrate the efficiency and practicality of the proposed system.

An Investigation of Cloud Computing and E-Learning for Educational Advancement

  • Ali, Ashraf;Alourani, Abdullah
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.11
    • /
    • pp.216-222
    • /
    • 2021
  • Advances in technology have given educators a tool to empower them to assist with developing the best possible human resources. Teachers at universities prefer to use more modern technological advances to help them educate their students. This opens up a necessity to research the capabilities of cloud-based learning services so that educational solutions can be found among the available options. Based on that, this essay looks at models and levels of deployment for the e-learning cloud architecture in the education system. A project involving educators explores whether gement Systems (LMS) can function well in a collaborative remote learning environment. The study was performed on how Blackboard was being used by a public institution and included research on cloud computing. This test examined how Blackboard Learn performs as a teaching tool and featured 60 participants. It is evident from the completed research that computers are beneficial to student education, especially in improving how schools administer lessons. Convenient tools for processing educational content are included as well as effective organizational strategies for educational processes and better ways to monitor and manage knowledge. In addition, this project's conclusions help highlight the advantages of rolling out cloud-based e-learning in higher educational institutions, which are responsible for creating the integrated educational product. The study showed that a shift to cloud computing can bring progress to educational material and substantial improvement to student academic outcomes, which is related to the increased use of better learning tools and methods.